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-Sir Arthur Conan  Doyl: The Second Stain



Contents

1 The Quantum Multipole Radiation
Ale&r  S.  Shunwvsky

1.1

1.2

1.3
1.4

1.5
1.6

1.7

Introduction

Quantum multipole field
Atom-field interaction

Quantum phase of multipole radiation

Polarization properties of multipole radiation
Measurement, locality and causality

Conclusion
References

i

1

6

14
24

48

61
72
75

i i



1.1 INTRODUCTION

Before we start to investigate that, let us try to realize what we do know, so as to make the
most of it, and to separate the essential from the accidental.

-Sir Arthur Conan  Doyl: The Priory School

Since the pioneering paper by Dirac [l], the formalism of quantum electrody-
namics (QED) is based on the use of the photon creation and annihilation operators,
forming a representation of the Weyl-Heisenberg algebra, and on the notion of the
electromagnetic vacuum state (e.g., see [2, 3, 41).  As far as a denumerable set of
Fock  number states can be generated from the vacuum state by successive action of
the creation operator, one can choose to interpret the electromagnetic vacuum as a
“physical system” ready for support of any electromagnetic radiation.

It is not heretical to consider the electromagnetic vacuum as a “physical system”.
In fact, it manifests some physical properties and is responsible for a number of
important effects. For example, the field amplitudes continue to oscillate in the
vacuum state. These zero-point oscillations cause the spontaneous emission [l], the
natural line breadth [5], the Lamb shift [6], the Casimir force between conductors
[7] and the quantum beats [8].  It is also possible to generate quantum states of
electromagnetic field in which the amplitude fluctuations are reduced below the
symmetric quantum limit of zero-point oscillations in one quadrature component [9].

In spite of the great success of QED, there still is a number of unclear principal
problems (e.g., see [ 10, 11, 12, 13, 14, 151).  Leaving aside the detailed discussion
of foundations of QED, we shall concentrate here on the problems of localization
of photons and quantum phase of electromagnetic radiation, which have attracted a
great deal of interest.

The point is that the photon creation and annihilation operators are defined in
QED as nonlocal objects. In other words, the photon number operator gives the
total number of photons in the volume of quantization without specification of their
space-time location [ 14, 151. Moreover, it has been proven by Newton and Wigner
[ 161 that no position operator can exist for the photon. There is a widespread belief
that the maximum precise localization appears in the form of a wavefront [ 171. At the
same time, the specific fall-off of the photon energy density and of the photodetection
rate can be interpreted as the photon localization in space [18, 191.

Perhaps, the most evident and bright example of the photon localization is provided
by the photodetection process, when photon is transformed into electronic signal in
the sensitive element of the detecting device [20]. Such a localization is usually
described in the operational way (in terms of what can be measured by a macroscopic
detector) through the use of the so-called configuration number operator, determining
the number of photons in the cylindrical volume ucAt,  where (T  denotes the area of
the sensitive element, c is the light velocity, and At is the detector exposition time
[ 14, 201.  Another interesting examples are provided by the localization in photonic
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crystals [Zl] and by the emission and absorption of radiation by atoms and molecules
ml.

We now stress that, in the usual treatment of photon localization, the radiation field
is considered as though it consist of the plane waves  ofphotons [ 14, 15, 16, 17,201.
In reality, the radiation emitted by the atomic transitions corresponds to the multipole
photons [23] represented by the quantized spherical waves [2].

Although the classical plane and spherical waves are equivalent in the sense that
they both form complete orthogonal sets of solutions of the homogeneous Helmholtz
wave equation [24, 251,  there is a strong qualitative difference between the two
quantum representations. The plane waves of photons correspond to the running-
wave solutions of the homogeneous Helmholtz wave equation in a large but finite
cubic cavity with periodic boundary conditions [l,  2, 14, 151.  This choice of the
boundary conditions corresponds to the translational symmetry of solutions and leads
to the states of photons with given linear momentum [3, 10,111. In turn, the  solution
of the homogeneous Helmholtz wave equation in terms of spherical waves assumes
the existence of a singular point, corresponding to an atom (source or absorber of
radiation) whose size is small with respect to the wavelength [24, 25, 261.  In this
case, the boundary conditions correspond to the rotational symmetry and lead to the
states of photons with given angular momentum [2, 4, 271.  Since the components
of linear and angular momenta do not commute, the two representations of quantum
electromagnetic field correspond to the physical quantities which cannot be measured
at once.

The simplest way to show the principal difference between the representations
of plane and multipole photons is to compare the number of independent quantum
operators (degrees of freedom), describing the monochromatic radiation field. In
the case of plane waves of photons with given wave vector 2 (energy and linear
momentum), there are only two independent creation or annihilation operators of
photons with different polarization [2, 14, 151. It is well known that QED interprets
the polarization as given spin state of photons [4]. The spin of photon is known to be
1, so that there are three possible spin states. In the case of plane waves, projection
of spin on the direction of i  is forbidden due to the translational invariance and hence
only two transversal polarizations are allowed [4].

In turn, the monochromatic multipole photons are described by the scalar wave
number k (energy), parity (type of radiation either electric or magnetic), angular
momentum j = 1,2,.  . ., and projection m = -j, . . . , j [2, 26, 271.  This means
that  even in the simplest case of monochromatic dipole (j = 1) photons of either
type, there are three independent creation or annihilation operators labeled by the
index m = 0, fl. Thus, the representation of multipole photons has much physical
properties in comparison with the plane waves of photons. For example, the third
spin state is allowed in this case and therefore the quantum multipole radiation is
specified by three different polarizations, two transversal and one longitudinal (with
respect to the radial direction from the source) [27,28].  In contrast to the plane waves
of photons, the projection of spin is not a quantum number in the case of multipole



INTRODUCTION 3

photons. Therefore, the polarization is not a global characteristics of the multipole
radiation but changes with distance from the source [22].

Another very important difference between the plane and multipole photons con-
sists in the character of zero-point oscillations of the field strengths [29]. We shall
show here that, unlike the former case with spatially homogeneous zero-point oscilla-
tions, the multipole vacuum noise strongly depends on the distance from the singular
point (atom). It is not an unexpected result. In fact, the zero-point oscillations reflect
the structure of the electromagnetic vacuum state which, in turn, depends on the
boundary conditions for the  homogeneous Helmholtz wave equation [3]. Let us note
in this connection that possible influence of an atom on the electromagnetic vacuum
state in the absence of radiation has been discussed in QED for a long time (e.g.,
see [30, 311).  It should be stressed that the spatial inhomogeneity of the multipole
vacuum noise can be very important for prognosis of experiments with trapped atoms
[32] and single-atom laser [33], especially in the engineered entanglement in the
atom-photon systems [32].

We now note that, in recent years, the entanglement has been recognized as one
of the most fundamental features of quantum systems as well as an important tool
of quantum communication and information processing (e.g., see [34]). One of
the promising ways in the engineered entanglement is represented by the so-called
two-photon polarization entanglement (see Sec. 12.14 in [14]). In this case, the
cascade decay of an atomic transition leads to the creation of two entangled photons
with different polarizations and different directions of propagation. Therefore, an
adequate estimation of the vacuum noise in the atom-photon interactions seems to be
of great importance.

While  the  simplified picture based on the model of plane waves of photons,
neglecting the presence of sources and absorbers, is incapable of describing the
photon localization, we show‘here that the use of the rich physical properties of
multipole photons leads to an adequate description of localization in the atom-field
interaction processes as well as in conventional photodetection. We note that the
causal relation between the boundary conditions for the homogeneous Helmholtz
wave equation and photon localization has been discussed recently in [ 19,22,29,35].

The representation of multipole photons is also useful in the investigation of the
quantum phase problem [36]. In the pioneering paper [l]  on the quantization of elec-
tromagnetic field, Dirac first postulated the existence of a Hermitian phase operator
defined by the polar decomposition of the annihilation operator and conjugated to the
photon number operator. Later it was realized that the Dirac’s phase operator can-
not be considered as a properly defined Hermitian operator, describing the quantum
phase properties of electromagnetic radiation (see, for review [14, 37, 38, 39, 401.
In particular, Susskind and Glogower [41] emphasized that the main difficulty in the
correct definition of the phase operator arises because the spectrum of the number
operator is bounded from below. An extension of the eigenvalue spectrum to nega-
tive values allows for the correct mathematical construction of the Hermitian phase
operator [42,43]  while leads to non-physical states. An attempt to use the cosine and
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sine of the phase operators rather than the quantum phase operator was discussed in
WI.

A way to overcome the difficulties in the definition of the Hermitian phase operator
has been proposed by Pegg and Bamett [40, 451. Their method is based on a
contraction of the infinite-dimensional Hilbert-Fock space of photon states X. Within
this method, the quantum phase variable is determined first in a finite s-dimensional
sub-space of %, where the polar decomposition is allowed. The formal limit s + 00
is taken only after the averages of the operators, describing the physical quantities,
have been calculated. Let us stress that any restriction of dimension of the Hilbert-
Fock  space of photons is equivalent to an effective violation of the algebraic properties
of the photon operators and therefore can lead to an inadequate picture of quantum
fluctuations [46].

Perhaps, the most important result in the field of quantum phase problem was
obtained by Mandel et al [47] within the framework of the operational approach.
According to their analysis, there is no unique quantum phase variable, describing
universally the measured phase properties of light. This very strong statement has
obtained a totally convincing confirmation in a number of recent experiments [47,48].
The results of the operational approach can be interpreted with the aid of the method
based on the special quasiprobability distribution functions [49].

Generally speaking, the quantum phase variables can be divided into two classes.
First of all, we have the pure operational phases which are completely determined
by the scheme of measurement. This has no contradiction with the existence of
an intrinsic quantum-dynamical variable responsible for the phase properties of light
[50]. In addition, there might be some inherent quantum phases related to the quantum
properties of photons. Since any photon can be specified by its energy, angular
momentum and/or linear momentum, the inherent phase should be determined by
either the angular or linear momenta, as the energy is a scalar. The former is connected
with the spin states and hence, with the polarization of radiation field. The latter can
lead to some “geometrical” phase, which, for example, can be measured as the phase
difference between two plane waves emitted by one source in opposite directions.

It is well known that the angular momentum of a quantum mechanical system is
specified by a representation of the SU(2)  algebra. If the corresponding enveloping
algebra contains a uniquely defined scalar (the Casimir operator), the polar decom-
position of the angular momentum can be obtained [5 11. This polar decomposition
determines a dual representation of the SU(  2) algebra expressed in terms of so-called
phase states [5 11. In particular, the Hermitian operator of the SU(  2) quantum phase
can be constructed [5 11.

Although the angular momentum of quantum multipole radiation is well defined in
terms of the multipole-photon operators of creation and annihilation, the direct polar
decomposition of corresponding SU(2)  sub-algebra in the Weyl-Heisenberg algebra
is impossible. The point is that this SU(2)  sub-algebra has no isotype representation
[52]. This means that the Casimir operator (scalar) cannot be uniquely determined
in the whole Hilbert-Fock space of photon states. Hence, the quantum phase of
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the angular momentum of multipole photons cannot be determined by the method
proposed in [51] valid for the quantum mechanical systems.

An approach focused on overcoming this difficulty was developed recently [36,
46, 53, 541.  The main idea, which seems to be a very natural one, is to consider
the radiation of a given quantum source (atom or molecule) rather than a source-free
electromagnetic field represented by the plane waves. Even in the classical picture,
the multipole radiation can be determined completely only if the source functions,
describing a local source at the origin, are known [25]. Within the quantum picture
where the atom-field interaction is described in terms of the perturbation theory [26],
we can take into account the source dependence of radiation using the conservation
laws. In particular, the conservation of angular momentum in the process of radiation
[26] permits us first to define the SU(2)  quantum phase of the atomic transition,
following the method by Vourdas [5 11, an then to construct an operator complement
of the atomic cosine and sine operators with respect to the integrals of motion in the
whole atom-field system [36].

Many attempts have been made to define the quantum phase of light via the angular
momentum (e.g., see [55] and references therein). The new element of our approach
[36,46,53,54]  is that we determine the quantum phase of radiation via the quantum
phase of the angular momentum of its source.

Let us stress that the electromagnetic vacuum state has no phase at all. This is
the same as saying that the vacuum state is degenerated with respect to the phase or
that the phase is distributed uniformly over the vacuum [ 14, 151. The degeneration
is taken off in the process of creation of the photon by atomic transition. Thus,
it seems to be quite natural to assume that the inherent quantum phase of photons
is generated by the source [36, 461.  Definitely, this is not an unusual assumption.
Actually, the classical amplitudes of the multipole field are completely determined by
the source functions, describing the charge density, current density and magnetization
[25]. Hence, the multipole photon operators, which are obtained by the quantization
of classical amplitudes [l, 21, are also specified by the source [56].

We also note that, in contrast to the Pegg-Bamett formalism [45], we consider an
extended space of states, including the Hilbert-Fock state of photons as well as the
space of atomic states [36,46,  53, 541.  The quantum phase of radiation is defined,
in this case, by mapping of corresponding operators from the atomic space of states
to the whole Hilbert-Fock space of photons. This procedure does not lead to any
violation of the algebraic properties of multipole photons and therefore gives an
adequate picture of quantum phase fluctuations [46].

We provide here a review of investigations of the photon localization and quantum
phase problems based on the use of the representation of multipole photons. Section
2 contains a general consideration of the field quantization. In particular, we compare
the zero-point oscillations of the plane and multipole waves of photons and show that
the  vacuum noise is concentrated in some vicinity of atoms. In Section 3 we discuss
the atom-field interaction leading to the multipole radiation and consider the SU(  2)
quantum phase representation of atomic variables. Here we also discuss a connection
between the SU(2) quantum phase states and entanglement phenomenon. In Sec-



6

tion 4 we describe the quantum phase of multipole radiation caused by the angular
momentum conservation in the process of radiation. We compare this approach with
the Pegg-Bamett formalism and with Mandel’s  operational approach. In Section 5
we consider the quantum polarization properties of multipole radiation. Then, in
Section 6, we discuss the photon localization, quantum measurements and causality.
To simplify the reading, we supplement each section by a brief resume. A general
conclusion and the implications of this work are presented in Section 7.

1.2 QUANTUM MULTIPOLE FIELD

We must not think of the things that we could do with, but only of the things we can’t do
without.

-Jerome K. Jerome: Three Men in a Boat.

1.2.1 Classical electromagnetic field

4f1 arbitrary free classical electromagnetic field is described by the vector potential
d(F)  which obeys the wave equation [ 14,24,25]

and Coulomb gauge condition

e.Ji=o. (1.2)

The field strengths are then defined as follows

The equation (1) can be solved by separation of variables [24]

(1.3)

(1.4)
e

Employing (1) then gives the homogeneous Helmholtz wave equations of the form

d2qJdt2  +  w;ql  =  0 ,

4V2G  + --t&  = 0,
C2

(1.5)
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where wt are some constants, arising from the separation of variables [24]. Solution
of the first equation in (5) gives the  harmonic time dependence

ql = exp(fiwtt).

Due to the harmonic time dependence in (4) it is customary to represent the vector
potential in terms of the positive and negative frequency parts:

.x(f)  = A(?) + Af($ (1.6)

where A’  - exp( -iwt)  .
The energy density of the field is

W(F)  = $-[P(iq  . qq + a’*(F).  f?(f)]. (1.7)

In turn, the flux of energy is given by the  real part of the complex Poynting vector

where, according to (3),

i?:(q  = -ikA(q, Z(FJ =  a  x  /i(f).

The angular momentum density of the field has the form [25]

(1.9)

One of the possible solutions of the first equation in (5), corresponding to the plane
waves, traveling along the z-axis and having the same amplitude and phase every-
where [24], has the form [ 14,24,25]

i&(F) =  c c &&faecT  +  C.C. (1.10)
e o=x,y

Here ato are the complex field amplitudes, $,v are the unit vectors of polarization
which, due to the Coulomb condition (2), obey the relation

ve zz,y . ze  = 0 (1.11)

and kz = wg/c”. Employing (3), (6) and (10) then gives

k

Ey(q  =  ixkAk,(r’)  =  -&(fl.
k

(1.12)
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To simplify the  notations we omit here the index !. Here, according to (lo), we have

A(f) = x’-yk  c &+?i%&&-iwt, (1.13)
k lT=ZC,y

where yk  is the normalization factor. Another possible solution of the homogeneous
Helmholtz wave equation (5) convenient for electromagnetic boundary-value prob-
lems possessing spherical symmetry properties is provided by the spherical waves
[24,25].  In this case, it is supposed that there is a singular point at the origin, corre-
sponding to a localized source distribution or to an absorber (in the case of incoming
spherical waves).

In the spherical coordinates

x = rsin9cos& y = rsinOsinf$, z = rcOSe,

the second equation in (5) takes the form [24]

d2UL 2 auf 1 a
-+;ar+-- au!
dT2 r2 sine ae ( >

s i n e -
a e

1 a2ut  2
+ - -

r2 sin2  e L%p2
+ SU[ = 0. (1.14)

Corresponding solution can be found by the separation of variables

in the mode function in (5), which yields the following set of ordinary differential
equations [24]

- j(j + 1) 1 R = 0,

&$j(sineg) + [j(j+l)-&]  O=O,

(1.15)

The solution of these equations is represented by certain combinations of spherical
Bessel or Hankel functions and spherical harmonics [24,25,26].

To establish a contact with the quantum picture, consider the so-called helicity
basis [27]

It is clear that {&}  formally coincide with the three  states of spin 1 of a photon.
Therefore, one can choose to interpret j&  as the unit vectors of circular polarization



QUANTUM MULTIPOLE  FIELD 9

with either positive or negative helicity, while 20 gives the linear polarization in the
z-direction [27]. We note here that to within the sign at ~~ the helicity basis (16)
coincides with the so-called polarization basis usually used in optics [57].

In the basis (16),  any vector Acan  be expanded as follows

A=  -& (-l)p&d,.
/G-l

In this basis, for the positive-frequency part of the vector potential in (6) we get
[2,24,25,26,27]

A~((r3  = CCC 2 (-1)~~-~VXkjm~(T3aXkjme-iwt. (1.17)
k  P j m=-j

Here X  = E, A4  denotes the type of radiation, either electric or magnetic, index j
takes the values 1,2,  . . . and index m = -j, . . . , j. The complex field amplitudes are
defined in terms of the source functions, describing the local distribution of current
and intrinsic magnetization [25]. The mode functions in (17) can be represented in
the following form [2,26,27]

VEkjmp  = YEkj[&fj+l(kr)(l,j  + l,~,m  - PIjm)Yj+l,m-p(~d’)

- m.fj-l(kr>(l,j -l,~,m-cll~~)Yj-l,~-~,(e,~>l,

VMkjmp  = YMkjfj(kT)(17j7P,m  - Pljm>Yj771(@,  4). (1.18)

Here TAkj  is the normalization constant, (. . . Ijm) denotes the Clebsch-Gordon co-
efficient, and Yl, is the spherical harmonics. The radial contribution into the mode
functions (18) depends on the boundary conditions as follows [24]

hp) (kr)
f&-1 = hy(kr):

{

outgoing spherical wave
incoming spherical wave (1.19)

.ih-1, standing spherical wave

where h:“)  denotes the spherical Hankel function of the first and second kind
respectively and j, is the spherical Bessel function [24,25].

Unlike the case of plane waves of photons, the multipole field (18) propagates as
a uniformly expanding spherical shell rather than propagates along given direction
of k. Instead of the symmetry relations (12), for the spherical waves of photons we
get the following reciprocity relations [2,27]

(1.20)
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1.2.2 Quantum electromagnetic field

The canonical quantization of the field has introduced by Dirac [l] (also see Refs.
[2,3,4,10,11,14,15,26,27])  is provided by the substitution of the photon operators,
forming a representation of the Weyl-Heisenberg algebra, into the expression for the
vector potential instead of the complex field amplitudes. For example, in the case
of plane waves, described by the positive-frequency part of the vector potential (13),
we get the following operator construction

where V is the volume of quantization which is supposed to be a large cubic box with
periodical boundary conditions. Here the harmonic time dependence is included into
the photon operators which obey the commutation relations

[ako,  acot]  = dkk’&o’. (1.22)

Due to the  translational symmetry along the z-direction, the plane waves of photons,
described by (21) and (22), correspond to the states of the radiation field with given
linear momentum

where i = ke’,.
The multipole electromagnetic field “can be quantized in much the same way as

plane waves”  [2]. We have to subject the complex field amplitudes in the expansion
(17) to the Weyl-Heisenberg commutation relations of the form

[aAkjm,askrjtmt ] = 6XX!bkk’6jj’bmml  a (1.23)

Then, the positive-frequency part of the operator vector potential of the multipole
radiation of a given type X  takes the form [2,  271

-‘&(q  = y  r x  2 (-1)~X’-~VXkjm~(T3axkjm, (1.24)
k  P j m=-j

where the harmonic time dependence is again included into the definition of the
photon operators of creation and annihilation. In the case of standing waves of
photons in an ideal spherical cavity of volume V, the normalization factors in (18)
take the form [2,27]

TEkj =
2nAc

kV(2j  + 1)
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rA4kj  =

Within the quantum picture, the Clebsch-Gordon coefficients in (18) represent the
vector addition of the spin and orbital part of the  total angular momentum of the field
[2]. The indexes j and m in (23) and (24) correspond to the angular momentum
and projection of angular momentum on the quantization axis. The electric-type
multipole radiation is interpreted as having the  parity of state (- l)j+l,  while the
magnetic-type multipole radiation is specified by the states with parity (-l)j. Due
to the spherical symmetry of solutions (17)-(  19), the representation of spherical waves
of photons (23) ,(24)  corresponds to the states of quantum multipole field with given
angular momentum. Since the components of the linear and angular momenta do
not commute with each other, the two representations (21), (22) and (23), (24) are
different in principle. They correspond to the physical observables which cannot be
measured simultaneously.

For both the plane and multipole waves of photons, the vacuum state can be defined
by the stability condition in the  same way [3,4]:

Vk,a ak,lO)  = 0,

VA, him UXkjm  10)  = 0. (1.25)

Then, the corresponding Fock  number states are defined as follows

a~kjm)~kjm
InWm)  = do  ) (1.26)

where n... 2  0 is an integer.

As can be seen from the equations (21), (22), and (23), (24),  there is an essential
difference between the representations of plane and multipole waves of photons. In
particular, a monochromatic plane wave of photons is specified by only two different
quantum numbers and u = z, y,  describing the linear polarization in Cartesian
coordinates. In turn, the monochromatic multipole photons are described by much
more quantum numbers. Even in the simplest case of the electric dipole radiation
when X  = E and j = 1, we have three different states of multipole photons in (23)
with m = 0, fl. Besides that, the plane waves of photons have the same polarization
(T  everywhere, while tbe states of multipole photons have given m. It is seen from
(24) that, in this case, the polarization described by the spin index ,u  can have different
values at different distances from the  singular point. More detailed discussion of the
polarization properties of the multipole radiation we postpone till Section 5.

A deeper difference of the two representations can be traced in the properties of
the zero-point oscillations. In fact, the energy operators obtained by quantization of
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(7) in the plane and spherical wave representations have the form [26,27,58,59]

f$7mlti)  = c fwk c (qj,axjm  + l/2).
k Mm

Thus, the energy of the vacuum state are

. (1.27)

Due to the definition of k, both expressions give an infinite energy and, at first sight,
cannot be compared with each other. In fact, this infinity is inessential because of
the following reason. The contribution of zero-point oscillations can be observed
only via measurement which implies an averaging of physical quantities over a finite
“volume of detection” and exposition time of detector. Such an averaging plays a
part of filtration leading to a selection of a certain finite transmission frequency band
[58]. It is then seen that, even if the filtration process leads to separation of the dipole
photons only, the second term in (27) exceeds the first one in three times. From the
physical point of view, this result is caused by the more number of quantum degrees
of freedom in the case of multipole photons.

Much more interesting and important result can be obtained from the consideration
of the spatial properties of the vacuum fluctuations. The simplest example is provided
by the calculation of vacuum average of the  squared electric field strength [58,59]

W(g  = (Olh?~O)  = k’()IhtlO),

obtained from (6) by the canonical quantization of the field. It follows from the
definition of the vacuum state (25) that this expression can be put into the form

W(f) = k2(OI[/i,A+]10)  = k”[/i,ii+]

independent of the type of representation. Consider first the monochromatic plane
waves of photons. Using (21) together with the commutation relations (22),  we get

wk = kc. (1.28)

Here V has the same meaning as in (21). Thus, the zero-point fluctuations of the
electric field strength of plane waves have the same magnitude at any space point.
By construction, (28) describes the zero-point fluctuations in empty space.
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In turn, employing the representation (23), (24) then gives for (27) in the case of
multipole photons the following

W(mu’ti)(,3  = k2  c c c IVA~~~,(~(~.
X=E,M  P k,j,m

(1.29)

It is seen from the definition of the mode functions (18) and (19) that, in contrast
to (28), the zero-point oscillations of the electric field strength of multipole photons
manifest the  spatial inhomogeneity.

For simplicity, we can compare the monochromatic contributions into (28) and
(29) at the same t and V. Then

a n d

-

\i.
$$.fj--l(kr)(l9.i  - 17/4m  - P(lm)Yj-l,m-p  I2

+ I fj(kr)(l,j,Pu, m - /-Jllm)Yj,m-p  I”] .

Since YL,~-~ - eitm-“)4,  this form is independent of the azimuthal angle 4.
Moreover, it is a straightforward matter to arrive at the conclusion that

(see discussion in Section 5.3).
Consider first the case of standing spherical waves in an ideal spherical cavity

when, according to (19),

We stress here that, in the quantum theory of radiation, exactly the standing spherical
waves are usually considered [2, 271.  Unlike the outgoing and incoming spherical
waves of photons, this choice does not lead to the divergence of the vector potential
at T + 0. Taking into account the properties of Bessel functions JJz), it is easily
seen that the principal contribution into W( mu1ti) in vicinity of the singular point
(atom) comes from Jl/,(k~),  corresponding to the electric dipole radiation. The



1 4

radial dependence of lV(““lti)  at fixed /C  and j = 1 is shown in Fig. 1. It is seen that
the vacuum fluctuations are concentrated near atom where their level can strongly
exceed that calculated within the framework of the model of plane waves.

The case of outgoing and incoming spherical waves can be examined under the
standard assumption that the atom located at the origin has a finite size which permits
us to avoid the divergence at kr -+ 0. It is seen that, in some small vicinity of the
atom, the zero-point oscillations, corresponding to the multipole field in an infinite
space, strongly exceed those in the ideal spherical cavity (see Fig. 2).

It should be stressed that the above results have been obtained under the only
assumption that the atom exists at the origin, no matter whether we use it as an
emitter or absorber of radiation. In other words, the spatial inhomogeneity of the
zero-point oscillations in (29) reflects the existence of the singular point which, in
fact, is the boundary condition for the homogeneous Helmholtz  wave equation (5).
It is possible to say that the electromagnetic vacuum state “feels” the presence of an
atom at the origin and is ready to support any radiation (with all possible X, j and
m) either outgoing or incoming. This is not an astonishing result. The influence of
the electromagnetic vacuum state by the presence of an atom has been discussed in
quantum electrodynamics for a long time [7,30,31].  The new result here is that the
zero-point oscillations are concentrated in some vicinity of atoms where their level
can exceed the standard level (28) which is usually considered.

The point is that the zero-point oscillations are responsible for the so-called shot
noise [14, 151,  determining the quantum limit of uncertainty in different optical
measurements. The above result shows that the presence of an atom causes the
increase of shot noise and hence a deterioration of the quantum limit of precision of
measurements, at least, in some vicinity of the atom [22, 291.  We discuss this effect
in more details in Section 6.

1.2.3 Resume

(i) Although the monochromatic plane waves of photons are described by only two
quantum numbers, specifying the polarization, the monochromatic multipole waves
of photons have much more quantum degrees of freedom: the type of radiation (parity)
A = E, M and the angular momentum j 2  1 and its projection m = -j, . . . , j.

(ii) The zero-point oscillations of the energy density of plane waves of photons
have the same magnitude everywhere. In contrast, those calculated in the presence
of a singular point (source or absorber) manifest spatial inhomogeneity. Precisely,
the vacuum noise is concentrated in some vicinity of the singular point.

1.3 ATOM-FIELD INTERACTION

“Well! I’ve often seen a cat without a grin”, thought Alice; “but a grin without a cat! It’s
the most curious thing I ever saw in all my life”.
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-Lewis Carroll: Alice’s Adventures in Wonderland

1.3.1 Multipole Jaynes-Cummings model

In the previous Section, the classical and quantum electromagnetic fields were con-
sidered as absolutely free sourceless objects. This picture follows from the existence
of nontrivial solutions of the homogeneous Hehnholtz wave equation (5). In some
textbooks, this mathematical fact is interpreted as the claim of the following type: the
electromagneticfield can exist in the absence of any charge (e.g., see [60]).  At the
same time, as we know, no one has ever observed photons that  had not been created
by a source. According to the quantum picture, the electromagnetic vacuum state
contains unborn photons of all possible types. They are extracted from this state in
the form of over-vacuum excitations (waves) in the  process of source-photon interac-
tion, leading to the photon generation. The observable properties of real photons are
governed by this interaction, which causes the success of conventional [23,61]  and
correlation [62,63]  spectroscopy. Rephrasing Lewis Carroll’s “Alice’s Adventures in
Wonderland”, it is possible to say that the source is similar to Cheshire Cat, creating
grin which propagates in space-time (see Fig. 3).

The simplest quantum source of photons is the atomic transition, creating, due
to the selection rules, multipole photons. The simplest model of the interaction of
an atom with the electromagnetic radiation is associated with the notion of so-called
two-level atom [64]. In fact, this model originates from the famous study of radiation
kinetics by Einstein [65]. With the development of laser, the notion of two-level
atom entered firmly into the practice of quantum optics. The fact is that, using
lasers as sources of electromagnetic radiation, one can act on the atom with field
having frequency very close to the transition frequency between any pair of levels.
In this case, the influence of the other levels can be ignored, and one can restrict the
consideration to a two-level atom (in general, an atom with a finite number of levels)
[64]. On the other hand, the use of high-quality cavities has the consequence that an
atom in such a cavity interacts with only one or very few modes of the  field quantized
in the volume of the cavity [32,33,66].

The branch of quantum optics studying the processes of interaction of one or a
few atoms with the quantized cavity modes is usually called cavity quantum electro-
dynamics (cavity QED). The theoretical concepts of cavity QED are based in the first
place on investigation of the Jaynes-Cummings model [67] and its generalizations
(for a review, see [68]). The reason for this is that the model describes fairly well the
physical processes under consideration and at the same time admits an exact solution.

In the usual formulation of the Jaynes-Cummings model, the atom is considered
as though it consist of two non-degenerated levels [67] . In contrast, the radiative
transitions in real atoms occur between the states with given angular quantum numbers
Ij, m) --+  Ij’, m’) such that j > j’ 2  0 [23, 26, 611.  This means that, at least the
upper level, is degenerated with respect to the quantum number m (-j 2  m < j).
For example, in the simplest case of the electric dipole transition between the states
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]j = 1, m = 0, fl) and Ij’ = 0, m’ = 0), the excited state is triple degenerated (see
Fig. 4). The corresponding generalization of the Jaynes-Cummings model has been
discussed in 136,531. Similar models have been considered in different problems of
interaction of quantum light and matter [69].

Interaction between a single atom and radiation field is usually considered within
the framework of perturbation theory using the following Hamiltonian [26,64]

(1.30)

where HO  describes the unperturbed atom and field and the rest is written for the
interaction between a single spinless  electron with charge e, mass m,, and momentum
p and free electromagnetic field described by the vector potential 2. Following
[36, 531,  consider a two-level atom with the electric dipole transition between the
triple-degenerated excited atomic state with j = 1 and nondegenerated ground state
with j’ = 0. The atom is supposed to be located at the center of an ideal spherical
cavity. The coupling constant of the atom-field interaction can be found by calculating
the matrix element [26, 271

-&(O,O]$.K+ddl,m)  = iko(O,O[d.  X]l,m), (1.31)
e

obtained from (30). The A2 term is excluded due to the use of the so-called rotating-
wave approximation [64]. Here

is the dipole moment and A(i;? is the operator vector potential (24) with the radial
dependence of the mode functions (18) described by ff (lcr) = jl( kr)  in (19) due to
the choice of the boundary conditions.

Assuming the central symmetry of atomic field and taking into account the fact
that the spin state of an atom does not change under the electric dipole transition
[27,61],  we can represent the atomic states in (31) as follows

where RI is the radial part of the atomic wave function. Then, representing the dipole
moment o!in the helicity basis (16) and carrying out the calculations of integrals in
(3 1) over the atomic volume, we get

Vm g  E ko(l,m]d.  A/0,0)  =  k,D (1.32)

where

D = e J Pa  drr3fi(kr)fo(kr)
0
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is the effective dipole factor. Here R and T, denote the cavity and atomic radii
respectively and k is the wave number, describing the  cavity field.

Taking into account the explicit form of spherical Bessel functions [70]

j2(kr)  = 3 - ckr)’  sinkr - ?!?$,
( w 3 @rj2 (1.33)

we note that, due to the structure of the mode functions (18), all other radial function
do not contribute into (24). Assuming that the atom is a point-like object (in fact,
very small with respect to the wavelength of radiation field), we get

~j~oojO(kr)  = 1, lilioj2(kr) = 0.

Using the properties of the Clebsch-Gordon coefficients [71] and spherical harmonics
[70], for the mode functions (18) in this limit we get

Inserting this into (24) we obtain

AEM  = -
This means that the electric dipole transition ]I, m) -+ 10,O)  creates a photon with
spin state (polarization) 1-1 = m. However, the picture of the polarization changes
with the distance from the atom due to the position dependence of the mode functions
(18).

Thus, the Jaynes-Cummings Hamiltonian for the electric dipole transition can be
written as follows [36, 531

H = Ho + Hi,,t,

Ho= g1 wa~lmaEh+WORmm)7

in=-1

Hint  = 9 2 {RmgaElm  + a&,,Rs,,,).
m=-1

(1.34)

Here w. = Akoc  and w = tikc  are the energies of the atomic transition and cavity
field respectively and the atomic operators are defined as follows

Rmg  = IL~)(O,Ol, Rnd = Il,m>(l,  4. (1.35)
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The first term in (34) describes the energy of the  free cavity field and atom, while the
second term gives the energy either of the transition 11, m) + 10, 0) with generation
of the multipole photon or of the transition 10, 0) -+ (1, m) accompanied by the
absorption of corresponding electric dipole photon.

The generalizations of the Jaynes-Cummings model (34) on the case of quadrupole
and other high-order multipole transitions can be constructed in the same way.

1.3.2 The SU( 2) atomic phase states

In the model Hamiltonian (34), the excited atomic state is specified by the following
three orthogonal states

117  l), 11, o>, 11, -1). (1.36)

In this basis, we can construct a representation of the SU(2)  algebra with the following
generators (see [53,54])

J, = R++-  R--,
J+ = ti(R+o  + Ro-1,
J- = di(R.o+ +R-), (1.37)

which obey the standard commutation relations

[J+,  J-l = 2Jz, [Jz, J*l = &J+ (1.38)

The enveloping algebra of (37), (38) contains the uniquely defined Casimir operator

J2=2  2 R,,~2xl, (1.39)
m=-1

where

1 = II, uu,  11  + IL O)(l, 01  + 11, -1)U,  -11

is the unit operator in the space spanned by the basis (36).

The existence of (39) permits us to use the method, proposed by Vourdas [51], to
construct the dual representation of the W(2)  algebra (37), (38). Following [51],
we represent the lowering and rising operators in (37) as follows

J+ = J,.E, J- = E+  J,., (1.40)

where Jr is the Hermitian “radial” operator and c is the unitary

&&+ = 1
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“exponential of the phase” operator. The terminology here is borrowed from complex
calculus. It is clear that the phase variable here describes the azimuth of the angular
momentum of the excited atomic state. The equations (40) can now be done in a
straightforward manner to yield

J, = d5(1-IL),
& = R+o  + &-  + eZ@R-+, (1.41)

where I,!J  is an arbitrary real parameter describing the so-called atomic reference phase
[53,54].  It is clear that e is a Coxeter-type operator [72] because

E3  = ei@ x 1.

In analogy to complex calculus, we can now define the cosine and sine of the atomic
SU(2) phase operators [36]

CL = (E + &f)/2, s,  = (E  - &+)/2i (1.42)

such that

c, +s,2 = 1 (1.43)

a n d

[G, Sal  = 0. (1.44)

Following [51], we now introduce the dual representation of the SU(2)  algebra (37),
(38). Consider first the eigenstates of the exponential operator in (41)

(1.45)

It is a straightforward matter to arrive at the relations [46]

f?k&=
2mr-$

3 > (1.46)

where m takes the values 0 and fl as above. It is easily seen that the so-called
“phase states” [5 l] (45) determine the basis dual to (36) [46]. In particular

5 Ibn)b#+nl  = 1.
m=-1

Then, the atomic SU(2)  quantum phase operator can be defined as follows

4 = 2 $&l&)(&I  =  -51  - Zf!L e
3dd  -

i*/3 c - ei*/3c+).

VII=-1
(1.47)
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In turn, the cosine and sine operators (42) can be represented as the following
functions

c, = cos  fj, S, = sin4

of the operator (47). Then, the dual representation of the atomic SU(2) algebra (37)
is provided by the following generators

J!“’  = 5& -~(~+l)lbn+1)bnl,

JL+’  = 2 J2 - mb - l>lbn-l)(bnl. (1.48)
m

Similar results can be obtained for an arbitrary atomic multipole transition in much
the same way as above. For example, in the case of the excited atomic state with
j = 2, the representation of the SU(2)  algebra takes the form

J+ = J2(2)(1] + J3]l)(Ol + filO>(-11  + Jz(  - l)(-21

J- = &!11)(21 + &]O)(ll  + ~61 - l)(O] + &I  - 2)(-11

J, = 212)(21  + ]l)(ll  - I - 1)(-l] - 21 - 2)(-21,

where In)  s (m = n). Corresponding exponential of the phase operator is

e = 12)(1]  + ]l)(O] + IO){-11  + I - l)(-21  + e@l  - 2)(2].

In this case, the eigenvalues of the phase variable take the following five independent
values

+ =ti+2mr
m

5 ’
m = 2,1,.  . . , -2.

In the general case of an arbitrary integer j > 1, the number of independent eigen-
values of the phase variable &, is (2j + 1).

1.3.3 The SU(2) atomic phase states, EPR paradox and entanglement

The above formalism of SU(2)  phase states can be used in a number of problems
of quantum physics. As an illustrative example of great importance, consider the
so-called Einstein-Podolsky-Rosen (EPR) paradox [73] (also see discussion in [ 14,
15, 74, 751).  The EPR paradox touches the conceptual problems of reality and
locality and existence of hidden variables in quantum physics as well as the more
technological aspects of quantum cryptography [34].
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In the original EPR gedanken experiment [73], a two-component system, consist-
ing of two spin l/2  particles, is considered. Up to some time to,  these particles are
taken to be in a bounded state of zero angular momentum. At to, the binding is taken
off without any disturbance of the spin states. Then, the separated particles move off
in the opposite directions. Since the particles are in the common quantum state, the
measurement of one chosen variable of particle one, moving “to the left”, completely
determines the outcome of a measurement of corresponding variable of particle two,
moving “to the right”.

Before making the measurement, the system is supposed to be in the EPR state
which is also called the entangled state. It is described by the wave function of the
form

Here ] $L,R) denotes the spin up or down state of the left or right particle. The
two state vectors in the right-hand side of (49) form a basis of the corresponding
Hilbert space in which we can define the representation of the SU(2)  algebra by the
following generators

J+ = ITbl-R)(ht~  I ,
J- = I JLTR)(TLJ-R  I,

Jz  = f(l TLJ-R)(?L-LR  I- I ~~R)(-LLTR I), (1.50)

so that these operators obey the commutation relations (38) as well as the condition
(39). Hence, the operators (47) admit a polar decomposition of the form discussed
in previous Subsection. In particular, the  exponential of the SU(2)  phase operator
(41) takes the form

&=I TAR)ULTR  I+ei’l  I~~R)(TL-~R  I, (1.51)

where $J  is again an arbitrary real reference phase. The SU(2)  phase states of the
type of (45), (46) which are defined to be the eigenstates of the operator (51), have
the form

where

It is now easily seen that, at $J  = 0, the W(2)  phase states (52) coincide with the
EPR states (49). Thus, the EPR states can be interpreted as the eigenstates of the
exponential of the phase operator (5 1) of the W(2)  algebra (50). The corresponding
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quantum phase operator takes the form

(1.53)

where

By construction, the operator (53) describes the relative phase between the two EPR
states (49).

There are many different physical realizations of the EPR or entangled states in
optics and condensed matter physics. For example, the creation of two photons with
different helicities  by a single atom in the process of cascade decay of transition of
the type j - j’ = 0 leads to the polarization-entangled state of the photons, leaving
the atom in opposite directions (e.g., see Sec. 12.14.1 in [ 141).

Another important example of entanglement is provided by the system of two
two-level atoms in an optical resonator [76]. Such a system can be described by the
following Jaynes-Cummings Hamiltonian

H = H,,  + Hint,

HO  = c wf  lef)(ef  I + wa+a,
f=1,2

Hint  = C i7f(lef)(9fla-a+l9f)(efl).
f=1,2

(1.54)

Here index f labels the atom in the cavity, lef)  (lgf))  is the excited (ground) state of
the corresponding atom, yf is the atom-field coupling constant, and the operators a+
and a describe the cavity photons. Among the eigenstates of (54)

kJ = d7& (rllO;9l;ef)  -72lO;e1;92)),

Iti*>  = 5 11;91;92) f
(

&-$72/0;91;e2)  +nlO;e1;92))  , (1.55)
)

there is a maximally entangled atomic state l$c) which, under the assumption that
yr  = y2,  takes the form

ll+o) = IO)  8 I&d,

IhA = -(191;e2)  - lel;92))
a

(1.56)

similar to EPR state (49). In the above formulas we use the following notations:

10;  ef; gf’ff) = Io)field @ kf)  8 19ff)
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1kt?l;d  = /l&d @ 191) @ 192).

To establish contact with the SU(2)  phase states, we can consider the following
representation of generators of the atomic SU(2)  algebra

J+ = led(e21,

J -  =  le2)(ellr

1
Jz  = -(Iel>(ell  - M(ezl,2

similar to (50). Then, the exponential of the phase operator takes the form (for
simplicity, we put here II,  = 0)

E  = lel)(e21  + le2)kal.

It is now seen that the maximally entangled atomic state in (55) is again the SU(2)
quantum phase state.

An interesting example of entanglement in condensed matter is represented by
the formation of Cooper pairs in conventional superconductors. It is well known
that the electron-phonon interaction in metals can lead to formation of collective
quantum states of paired electrons with  opposite spins and linear momenta [77]. In
the simplest quasi-spin form, the system can be specified by the Hamiltonian [78,79]

(1.57)
P P,P'

where Ep  denotes the energy spectrum depending on the momentum p of electrons,
Jppt  is the effective coupling constant, and the Pauli operators

- 0 1
uP= 00 '( > +- 00

aP- 10 '
( >

G=i(; !Tl)

correspond to the pairs of electrons with opposite spins and momenta. Since the
Pauli operators obey the commutation relations

[up, US]  = 2a=f5p PP', [u;,  $1 = i-up,,,

which coincide with (38),  by performing an analysis similar to that described in
previous Subsection, we get

E P 2x u-- + fp’a+
P P'

This is the W(2)  exponential of the phase operator similar to (41) defined for each
P.

It is also known that, in the so-called thermodynamic limit, when the number
of electrons tends to infinity at constant density, the state of the system with the
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quasi-spin BCS Hamiltonian (57) is the eigenstate of the trial Hamiltonian, in which
the interaction part of (57) is changed by the operator [79]

Hint  = -T, c&-A + up’,* - lA12),
P

where T, is some constant related to Jpp, in (57) and A is the complex parameter,
characterizing the gap in the spectrum of eigenenergy and depending on the temper-
ature. Thus, at I+!J = -2 arg  A, the superconducting state (the eigenstate of Ed)  is
the  SU(2) quantum phase state, describing entangled electrons with opposite spins
and momenta (Cooper pair). Therefore, the phase transition into the superconducting
state can be interpreted as the creation of collective entangled state of electrons.

1.3.4 Resume

(i) For the electric dipole radiation described by the Jaynes-Cummings Hamiltonian
(34),  the polarization of photons at kr + 0 is defined by the quantum number
m = 0, fl, describing the  excited atomic state.

(ii) For any atomic multipole transition, the excited state can be described in terms
of the dual representation of corresponding SU(2) algebra, describing the azimuthal
quantum phase of the angular momentum. In particular, the exponential of the phase
operator and phase states can be constructed. The quantum phase variable has a
discrete spectrum with (2j + 1) different eigenvalues.

(iii) In a special case of j = l/2,  the eigenstates of the  exponential of the phase
operator coincide with the EPR (entangled) states, which can be interpreted as the
SU(2)  phase state.

1.4 QUANTUM PHASE OF MULTIPOLE RADIATION

No, my dear Watson, the two events are connected - must be connected. It is for us  to find
the connection.

-Sir Arthur Conun  Doyl: The Second Stain

1.4.1 Conservation of angular momentum in the process of radiation

We now turn to the problem of the SU(2) quantum phase of multipole radiation. As
a particular example of some considerable interest, we investigate the electric dipole
field. All other types of the multipole radiation can be considered in the same way.

In Section 3.2, we introduced the atomic quantum phase states through the use
of the representation of the SU(2)  algebra (37) and dual representation (48),  cor-
responding to the angular momentum of the excited atomic state. The multipole
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radiation emitted by atoms carries the angular momentum of the  excited atomic state
and can also be specified by the angular momentum [2,26,  271.  The bare operators
of the  angular momentum of the electric dipole radiation have the form

M+ = &qa$%l  + a&-),

Mm  =  &‘(a,+.+  +  atao),
1

M, = C maAa,. (1.58)
m=-1

This result can be obtained by canonical quantization of the components of classical
angular momentum (9) [2]. Hereafter in this Section we use the following notation:

Taking into account the commutation relations (23), it is easy to check that

[M+, M-1  = 2& [Mz, &I  = fM*, (1.59)

so that the operators (58) form a representation of the SU(2)  sub-algebra in the
Weyl-Heisenberg algebra (18) of the electric dipole photons.

The electric dipole photons, as well as the operators (58), are defined in the Hilbert
s p a c e

ufield  = &) %,
m=-1

(1.60)

where each sub-space Z,  is spanned by the countable set of Fock  vectors In,)
(%I  = 0, 1,2,  . . .), which obey the ortbogonality condition

and the completeness condition

Here 1 the unit operator, acting in (60). Unlike (39),

M’=M;+M+M--M,#l

(1.61)

in the whole Hilbert space (60). In other words, there is no isotype representation
[52] of (58) in (60). Therefore, the polar decomposition of the SU(2)  sub-algebra
(58) in the Weyl-Heisenberg algebra of electric dipole photons cannot be constructed
in the way discussed in Section 3.2.



26

At the same time, we know that the photons carry information obtained from
the atom in the process of generation. This information is transmitted through the
conservation laws. In particular, the photon carries the angular momentum of the
excited state because

[(A  + Ma, H] = 0. (1.62)

Here J, denotes the atomic SU(2)  generators (37) with CY = z, f , M,  is the
component of the field angular momentum operator (58),  and H is the Jaynes-
Cummings model Hamiltonian (34).

Since the atomic SU(2)  quantum phase, discussed in Section 3.2, is defined by
the angular momentum of the excited atomic state, the conservation law (62) can be
used to determine the field counterpart of the  exponential of the phase operator (41)
and other  operators referred to the SU(2)  quantum phase [36,46].  For example, it is
easily seen that the operator

Epa,j  = a$, + &-a-  + &a+ (1.63)

complements the atomic exponential of the phase operator (41) (at $J  = 0) with
respect to the integral of motion:

[(&a +  &ad),  ff] =  0. (1.64)

The operator (63) can be considered as the result of “mapping” of the atomic expo-
nential of the SU(2)  phase operator (41) on the field variables through the use of the
integral of motion (64). Unlike (41), it is not unitary

&ad&d # 1,

but it is a normal operator

commuting with the total number of photons

In the same way, it is easy to show that the operator constructions

&-ad  + &,f,d

a n d

(1.65)

-+md - c&d)
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complement the atomic cosine and sine of the SU(2)  phase operators (42) with
respect to the integrals of motion with the atom-field Hamiltonian (34).

1.4.2 Dual representation of dipole photons

We now turn to the construction of the dual representation of the photon operators,
providing the field counterpart of the SU(2)  phase representation of the atomic
variables. It is easily seen that the atomic exponential of the SU(2)  phase operator
(41) takes (in the representation of dual states (46)) the  following diagonal form

@’ = 2  ei~~IbJ(4ml, (1.66)
m=-1

where C#J~  takes the  values (46) (hereafter we put II,  = 0 without loss of generality).
Thus, the dual representation of the atomic operators leads to the diagonal form of
the exponential of the phase operator.

In turn, the field operator (63), representing the field counterpart of (41), can be
diagonalized by the following Bogolubov type [80] canonical transformation [46]

a, = & 6 emim'+"a,l,
77X---l

1

a, = -$ C-,  eirn14-  ad, (1.67)

which has the form of finite Fourier transformation with q&, defined in (46). It
follows from the commutation relations (23) that

kh, a”,,] = 6,,1.

Hence, the operators a in (67) also form a representation of the Weyl-Heisenberg
algebra of the electric dipole photons. Employing this transformation (67) then gives
the diagonal representation of the operator (63)

(1.69)
77%=-l

similar to (66). It is now a straightforward matter to arrive at the integral of motion

[(Q’ + &, H] = 0. (1.70)

By construction, it corresponds to (64) in the dual representation of the dynamical
variables for the atom and radiation field. This integral of motion reflects the fact
that the SU(2)  phase information is also transmitted from the atom to photon in the
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process of generation. In other words, the integral of motion (70) is responsible for
the mapping of the atomic SU(2)  phase on the field variables. Therefore, one can
choose to interpret a, and a$ in the  canonical transformation (67) as the annihilation
and creation operators of the electric dipole photons with given radiation phase [46].

As can be seen from tbe transformation (67), the operators a, obey the same
stability condition (25) as a,:

Vm, m’ amlO)  = adlO> = 0, (1.71)

where the dipole vacuum state is defined as follows

Hence, the creation operators a$., in (67) can be used to generate the Fock number
states in the “phase representation”

(1.72)

such that

aLa,(  Y,(Y,), v, = O,l;..

a n d

The unit operator here coincides with (61). Thus, the states (72) form a basis in the
Hilbert space (60) dual to the basis of conventional number states In,).  In analogy
to the atomic phase states (46), we call (72) the radiation phase states of the electric
dipole photons. It follows from (69) that the radiation phase states (72) are the
eigenstates of the operator E:$:

In contrast to the relation (45), the eigenvalues of E::‘,  in (73) contain, in addition to
the exponential, a factor of v,,  describing tbe number of photons in a given radiation
phase state. Thus, this is an non-normalized exponential of the phase operator.

The above results lead to the conclusion that the radiation phase states (72) are
dual to the conventional Fock  number states In,).  In turn, the operators (67) form
the representation of the Weyl-Heisenberg algebra of the electric dipole photons dual
to the operators a, and u;f,  [46].
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Although the canonical transformation (67) has the very simple form of the finite
Fourier transformation, the connection between the conventional number states and
the radiation phase states (72) is not simple:

Ivm) = g 2 yy  wJK+JK+(y  no  ;;-kb$

no=0  n+=O . . m-

xln+;nrJ;v,  - n o - n + ) .

It is interesting that the “dual” coherent states

(1.74)

are equivalent up to the following transformation of the parameters:

similar to the canonical transformation (67). Here

02) = exp(&)a$  - H.c.)

02) = exp(&)aL  - H.c.)

are the “dual” Glauber displacement operators [8 11. If we consider, as an example,
the state Jo+  ; 0; 0) of the electric dipole radiation with only one component m = +l,
we will see that it is represented by the dual coherent state

m
in which all the three “phase” components of the electric dipole radiation are in the
coherent states.

The dual representation of the photon operators (67) reflects the transmission of
“phase information” from the atomic transition to the radiation field via the integral of
motion (70). This statement can be illustrated with the aid of the Jaynes-Cummings
model (34). Employing the atomic phase states (46),  we can introduce the dual
representation of the atomic operators (35) as follows

(1.75)
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Then, the simultaneous use of the dual representation of the atomic operators (75)
and the canonical transformation of photon operators (67) leads to the following form
of the Jaynes-Cummings Hamiltonian (34):

(1.76)

which has exactly the same operator structure as (34) in the dual representation [46].
Since the dual atomic operators (75) describe the transition between the atomic phase
states and ground state, and the operators a, and a$ determine the annihilation and
creation of photons with given radiation phase, the interaction term in (76) describes
the transmission of the quantum phase information from the atom to photons.

We now note that the quantum phase in the Jaynes-Cummings model has been
examined in a huge number of papers (see, for a review, Refs. [39, 681). Most of
them are based on the approach proposed in the pioneering paper by Dirac [l] and
developed by a number of authors. Among the principal contributions to the field,
Pegg-Bamett approach [45] should be mentioned as the most popular in recent years.
The main idea of the approach consists in defining the quantum phase operator first in
a finite s-dimensional subspace  of the infinite-dimensional Hilbert space ?-ff+rd with
subsequent formal limit transition s -+ 00 which is taken only after the averages have
been calculated. In contrast, we consider the extended space of states X, @J  3tfield  in
which the quantum phase of radiation is defined by mapping of corresponding atomic
operatorsfrom T-i,  into the whole Hilbert space ?fftfietd  (60),  using the conservation of
angular momentum. In view of the dual form of the Jaynes-Cummings Hamiltonian
(76), it is possible to say that the radiation phase is expressed in terms of what can
be generated by a given quantum source.

Our consideration so far have been applied to the electric dipole radiation. It
is straightforward to find the general form of the canonical transformation (67) in
the same way as above. In the case of an arbitrary monochromatic pure (X,$-pole
radiation we get [46]

(1.77)

Here we again put $  = 0.
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1.4.3 Structure of radiation phase

We now examine the spectrum of radiation phase constructed in previous Subsection.
Consider the state

I

wad’)  = @ I%JY (1.78)
m=-1

where ]vm) is the radiation phase state (72). It is clear that (78) is the eigenstate of
the operator (73). Since the operator (73) commute with  the total number of photons

the eigenstates and eigenvalues of ckf’,  can be specified by the index

1

n =
c %,
m=-1

describing the total number of photons in a given state (72), (74) and by an additional
index f?,  describing a given distribution of n photons over the three independent phase
components of the electric dipole radiation in (72), (74). The total number of possible
different values of C, corresponding to a given n, is clearly

T h e n

gn  + 2)(n + 1).

(1.79)

where ]q5tlad))  denotes the state (78) at given n and f?.  The modulus of the eigenstates
in (79) is determined as

=n2+2(v~+v2)-3n(V++V-)+3V+Y-. (1.80)

In turn, for the “phase eigenvalues” (~,,l  in (79) we get [46]

tan4  =
i&v+  -v-j

2Va - (v+  -t v-) .
(1.81)



32

Taking into account the physical meaning of the atomic operators (41) and (66) and
the integrals of motion (64), we can consider the field operators (63) and (69) as the
non-normalized exponential operators of the radiation phase which, by construction,
is the W(2)  phase of the multipole (electric dipole) radiation. By performing a
similar analysis to that  described in Subsection 3.2, we can define the cosine and sine
operators of the radiation phase as follows [36]

cPdJ  = J--Gad  + &), Spad  = --iK(&,,d  + CTad), (1.82)

where K is the  normalization coefficient determined from the natural condition

(Cad  + s,“,,, = 1, (1.83)

where (. . .) is the averaging over the states of the  electric dipole radiation under
consideration. It is clear that Grad  an d STad  are commuting Hermitian operators
so that corresponding physical quantities can be measured at once. In the dual
representation provided by the canonical transformation (67),  the operators (82) take
the diagonal form

(1.84)

Therefore, averaging over the phase states (78) we get

According to the condition (83), we obtain

.
K=I

2nd

in this case. Hence, the radiation phase states (78) are the eigenstates of the operators
(84) which, due to their structure, can be interpreted as the cosine and sine of the
radiation phase operators. It is interesting that the eigenvalues of the radiation phase
variable defined by (81) belong to the interval (0,27r)  and form a discrete set for any
finite number of photons n and

e = 1,2,.  . . ) (n + l)(n  + 2)/2.

The first few eigenvalues are shown in Table 1 and Fig. 5.
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It is not difficult to see that the vacuum averages of the operators (84) have the
form

while the vacuum variances

(Ol(AC;:;)‘(O)  =  (O((AS$)“lO)  =  1
2’

Hence, as all one can expect, the vacuum distribution of the radiation phase is uniform.

Consider now the electric dipole radiation with coherent components m = fl,
while the component m = 0 is in the vacuum state:

I4 = Ia+>  @J  IO) @ IQ-) (1.85)

at lo+/  = ICLI E IoI.  In this case, the condition (83) gives

K = 1

&~)~(2  + la12)  ’

so that

(1.86)

where

A+-=arga+-arga-.

One can see that at IQ(  + 00 we get

(C;$))  + cos A+-, (S$)) --+  sin A+-,

so that in the classical limit of infinitely many coherent photons the operators (113)
define the cosine and sine of the phase difference between the two components of the
radiation field (85). In turn, for the variances we get

(Ol(AC;$)210)  =  (O((AS~~~)“lO)  = 2 +  ““+-
2(2 + Icrl”)  .

Here the right-hand side tends to zero when ICYI  + co.  Hence, the radiation phase
has the natural classical limit.
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At first sight, the equation (87) gives wrong limit at Ial  + 0:

lili,(O~(AC~~~)“~O)  = lilio(O~(AS~~~)2~O)  = 2 + ‘yA+-. (1.88)

In fact, this is an illusory contradiction. Due to the degeneration of the vacuum
state with respect to the phase difference, the limit transition Ial  -+ 0 should imply
the averaging over all possible A E  (0,27r)  which leads to the natural value of the
vacuum variances.

Consider now the case when Ia+ ( #  Icr- I in the state (85). Then, instead of (86)
and (87), we get

cc%,,  = cos A,-

&  +  la+/-2  +  la-I-2

cm, =
sin A+-

J1+ lcX+l-2  + I%[-2

a n d

= la+12  + la-l2  + Icx+IIcx-1 cosA+-

2(b+12  + b-l2  + 1~+121=12>

(1.89)

(1.90)

respectively. Examine now the averages (89) and variance (90) as a function of ILY+  I
at fixed lo-1  [54]. We obtain

(1.91)

because the operators (84) define properties of the  relative phase (phase difference
between the components) which does not exist when only component m = -1 is
emitted. It is seen that, under the condition

la+llo-1  < cosA+-  5 1, (1.92)

which can be realized in the strong quantum case of very low intensities, the value
of the variances (90) can exceed the vacuum limit of l/2.  The maximum in (90) is
achieved at

b+l  = b-l x
,/la-l4 + (1 + 1~1~)  cosA+-  - (a-l2

(1+ Ja-(2)~~~A+-  ’
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The dependence of the variances (90) on IQ+]  at fixed jcr-1  is shown in Fig. 6. The
qualitative explanation of this effect of strong increase of quantum fluctuations in the
low-intensity limit is based on the consideration of the probability to have a given
phase difference A+-. At ]a+ I = 0, there is a uniform probability distribution in the
system, causing the limit relations (91). Creation of very few photons of the mode
m = +l leads to the formation of some domains with almost equal probabilities
having phase differences A+-  and A* + x. So, it looks like a “phase bunching”
(for the bunching of photons, see Refs. [14, 151).  Further increase of IQ+]  leads
to formation of a more or less sharp probability distribution which cannot reach the
h-function shape because the variances (90) achieve the saturation described by the
expression

which coincides with the classical limit only if Jo-  ( -+ 00 as well. This means, that
the presence of one quantum component in the coherent state (85) leads to quantum
phase fluctuations.

Using the standard representation of Glauber coherent states in terms of the number
states of photons [ 14, 8 l]

and making use of the relation (74), we can represent the coherent state (85) in the
following way

where the parameters c@ have been defined at the end of Subsection 4.1. Assume
that (cr+l  = Icx-I  E Ia]. Then

c I’y$(2  = 2142
m

and the probability to observe the radiation field in a given phase state (72), (74) is

= e
n lcp

fi [l + cos(A+-  - 2mr/3)lVm,
u+!uo!u-!  m=-l

(1.93)

where n = C,,,  u,,,  . It is easily seen that this probability tends to zero when Ial  + 0
or ICEI  + 00. This means that the eigenvalues of the radiation phase are distributed
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uniformly over the interval (0,27r)  in the vacuum state as well as in the classical limit
of high intensity coherent state. Between these two extrema, the probability (93) has
a maximum, which can be considerably high. It is interesting that the position of the
maximum is completely determined by the mean number of photons IQ,,, I2  = n,
while the magnitude depends also on the phase difference A+- (see Fig. 7).

Let us now calculate the probability to have a given value of the radiation phase
in the coherent state under consideration. Consider, for example, the eigenvalue of
the radiation phase cp  = 2~r/3. Employing equations (80) and (81) then gives the
following properties of the states corresponding to this radiation phase:

n-3u-  = IE,, u+  =n-22y-, 24) = u-.

It is easy to see that the states obeying these conditions have the following structure:

h - 24; kp;  Ic,) (1.94)

where p is an integer and for each nP = 3p,  3p  - 1,3p  - 2 the numbers kP take the
values kP  = 0, 1, . . . ,p-1. Forexample,atn,  = lO,wegetp=  4andn,  =3p-2,
while the states (94) are

110; 0; 0)’ 18;  1; l), 16;  2;  2;  >, 14; 3; 3).

Consider first the states In,;  0; 0) in (94). Then, the probability (93) takes the value

Pn,  = I@,;  0; Ola+;  0; a-)12

xe-w2  2
03 .np  %[I  + cos(A+-  - 2a/3)]‘+.

It is then clear that P,,,  reaches its maximum at A+- = 2rr/3.  Then, the total
probability to have the phase states In,;  0; 0) is

(1.95)

(see Fig. 8). It is clear that this function P gives the lower bond of the total probability
to observe the radiation phase cp  = 2~ / 3 in the coherent state under consideration.
The contribution of the other states (94) can be calculated in the same way.

1.4.4 Radiation phase in Jaynes-Cummings model

To illustrate the exchange of the phase information between the atomic transition and
multipole field, consider the electric dipole Jaynes-Cummings model (34). Assume
that the field consists of two circularly polarized components in a coherent state each.
The atom is supposed to be initially in the ground state. Then, the time-dependent
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wave function of the system has the form [53]

P(t)) = c P(n+,n-)[cos(gfi)lO, 0)
+(a+117  1) + a-11, -1))5(n+>n--)lln+n-), (1.96)

where In,)  denotes the Fock  number state with n,  photons with the quantum number
m, 11, m) and 10, 0) are the excited and ground atomic states respectively, g is the
coupling constant in (34),  n = n+n-,

a n d

5(n+,n-)  = sin(gt~l e--i(n+l)wt
&Gl .

Then, the mean values of the operators (82), describing the cosine and sine of the
radiation phase, take the  form

(Crad)t = J
b+12b-I2 (a$+  + a+u-)t

la+l2la-(2  + lcY+l2lcL(2  la+12  + la-12 CoSA+-y
&-&  = /

b+12b-I2 (ai$+ + ata-)t
la+121a-12  + Ja+12)a-12  la+/21  + 42 sin  A+-. (l.97)

Here

(a$u+  + utu-)t  = lcx+12 + (a-l2 - IP(n+,  n-)1’ sin2  gtJn++n-
n+,n-=O

and A+-  E arg cry+  - arg CL. Thus, the averages (97) describe the Rabi oscillations
of cosine and sine of the phase difference between the two coherent components of
the field. Corresponding variances have tbe form

((Acmd2>t  =
(u$u+ + u+u-)t

la+l2 + la-l2 [((Acd)2)0  + PcQL

@srad)“h  =
(a$+  + utu-)t

la+l2 + la-l2 [((Asd)2>0  + PsQl. (1.98)

Here

1
((Acmd)“)o  =  - cos  A + - ,2
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((Asf-mf)2)o  =
w + b-l2 - b+lb-I
(42  + (42  + Ia+lla-l  cosA+-

PC!  = b+lb-I
(Ial” + la-l”  + (a+(lcLl)(lcYl2 + lay-l”  + Ia+IIa-I)  cos2  A+-9

PC = b+Ib-I
(la12  + la-12 + la+llcLl)(lap  + la-12 + Ia+lla-I)  sin2  A+-

In (98), Q is the Mandel’s factor [ 141, describing the deviation of the photon statistics
from the Poisson distribution for the total intensity:

Q = W(a+a+ +&L)]“)  - ((c++  + u+u-))+
((a$+  + du-)>

It is seen that the time-averaged Mandel’s Q-factor is always positive, which shows
the super-Poisson number distribution for the total field.

Since  (CL&  ad  ((ACLd”) t can betransformedinto (S&t  and ((AS,.ad)2)t,
respectively, by the change of phase difference

A+-  + A,- + 4,

it is enough to examine only one pair of these functions. In Fig. 9, the Rabi
oscillations of the variance ( (AIZ’,.~~)~) t are shown as a function of time for different
A , - . At small A+-, the collapse and revival picture of Rabi oscillations behaves
quite typically for the Jaynes-Cummings model (e.g., see [68]),  while the increase of
A+-  leads to a confluence of the nearest revivals. The Rabi oscillations of (C,.&
have similar behavior.

It should be emphasized that the system under consideration completely describes
the process of transmission of the phase information between the field and atom.
Initially the atom is in the ground state with the angular momentum 0 and has no
W(2)  atomic phase at all. Absorption of photons induces an atomic phase which
coincides with the phase difference between the two coherent components of the
field. It can be concluded from a direct calculation of the expectation value of the
atomic cosine operator (43) over the state (96):

(C& = 2 JP(~+,~L-)[~~~~~(;~) cosA+-.
n+,n-=o

This again clearly demonstrates the one-to-one correspondence between the atomic
SU(2) phase and the radiation phase.

Let us also stress that, according to (98), the variances of the cosine and sine of
the radiation phase can be measured in the same way as the Mandel’s Q-factor.
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1.4.5 Radiation phase and Pegg-Barnett quantum phase

Following [54], let us compare the quantum statistical behavior of the radiation phase,
constructed in the previous Subsections of this Section and that obtained within the
Pegg-Barnett approach [45], which has received a lot of attention during the last ten
years and has led to many important results (see, for a recent review Refs. [39,401).
We use here the form of the  Pegg-Bamett approach considered in Ref. [82]. The
point is that Ref. [82] deals with a generalization of the Pegg-Barnett approach to the
case of two circularly polarized modes. Then, the phase distribution over the phases
of two circularly polarized modes is determined as follows,

where ]4+,  c$-) is the Susskind-Glogower phase state [41] and I$) is the state of the
radiation field. To establish the connection with the  results already obtained in this
Section, suppose that

Iti)  = la+)  @ PO>  @ la->* (1.99)

Since the formalism of the radiation phase is focused on the phase difference between
the components, we need to use the distribution function for the relative phase

We use here the notations of Refs. [54, 821.  Referring to the procedure suggested in
Refs. [82,83]  to cast the  range of 4 into 2n  range from 47r range, we take

PST = c lww12,
n=O

where

Using this distribution function, one can calculate the mean value of any function
F(C)) of the relative phase as follows [82]

(F(4)) = Jr &5P27r(4)F(@).
--A

In the case under consideration, the relative phase represents the phase difference
between the two circularly polarized components in coherent state. Then, for the
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Pegg-Bamett cosine of the relative phase we get

(cos$pB)  = e(l”+l~+l”-l*)  2 la+l;,be;12n-
T&*=0 . .

Re(a+a*_)
x &n+  + l)(n-  + 1).

(1.100)

In turn, the average of the squared cosine takes the form

(cos2  ~
PEl

> = 1.  + e(la+12+lu-lz)
2 2

2  Ja+p+lfLp

n*=O n+!n-!

Re(a+d.)

x &z+  + 2)(n+ + l>(n-  + 2)(n-  + 1).
(1.101)

Here 4pB denotes the Pegg-Bamett quantum phase operator [45]. These expressions
can be now compared with the results (89) and (90) for the radiation cosine and its
variance. To clarify the difference between the two approaches, we represent (89)
and (90) in the same manner as (100) and (101) [54]:

(Cifi)  = e(b+12+b-12) 2 la+  p+  ICY-  p-

n*=O n+!n-!

Re(a+d)

x Jla+l2  + la-12  + Ia+l2lcLl2
(1.102)

a n d

(cbh4)
r a d

2Jja+p  + la-12 + la+)2lcLl2

[Re(a+a*_)]2

+2(b+12  + la-l2 + b+l”b-I”>  n*+O
(1.103)

One can easily see that each term in the sums in equations (100) and (101) has
different normalization, while in equations (102) and (103) all the terms have the
same normalization factor related to our choice of the constant K in (82),  (83). In
addition, the equation (103) contains an extra term proportional to (Cafe).  This
term comes from the vacuum fluctuations related to the mode m = 0. This causes
a striking difference when one of the modes m = fl is in the quantum domain.
Exactly, the existence of the “phase bunching” discussed in Section 4.3 is caused just
by this term. At the same time, both approaches show the saturation of the variances
when one of the intensities tends to infinity while the second if kept constant (Fig.
10). It is seen that the quantum fluctuations of the phase difference between the two
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circularly polarized coherent fields with different helicity calculated with the aid of
the radiation phase always exceed those calculated within the Pegg-Bamett approach.

This fact can be explained in the following way. The cutoff of the Hilbert space,
which is a distinctive feature of the Pegg-Barnett approach [45], leads to an effective
change of the algebraic properties of the photon operators. In fact, such a cutoff of
the Fock  basis leads to the definition of the unit operator which can be considered as
some approximation of the Casimir  operator of the SU(2)  sub-algebra, describing
the angular momentum of radiation, but only in a particular sub-space of the Hilbert
space of photons. Existence of the unit operator makes it possible to perform direct
polar decomposition and determine the corresponding quantum phase properties. It
can be clearly traced in Ref. [84]. At the same time, the cutoff procedure reduces the
algebraic properties of photons responsible for the quantum fluctuations. The limit
taken in the Pegg-Barnett approach after the calculation of all expectation values
cannot completely restore these properties, which are especially important in the
quantum domain.

Unlike the Pegg-Barnett approach, the definition of the radiation phase is based
on the conservation laws for electromagnetic radiation and canonical transformation
(67), which does not disturb the Weyl-Heisenberg algebra of the photon operators.

1.4.6 Radiation phase and Mandel’s operational approach

We now note that the operators (69) and (84) introducing the radiation phase, are
defined in terms of bilinear forms in the photon operators. At first sight, such a
definition runs counter to the original idea by Dirac to determine the Hermitian
quantum phase via linear forms in the photon operators [l]  (also see [38, 42, 441).
Leaving aside Dirac’s problem of existence of a Hermitian quantum phase variable
of a harmonic oscillator, we should emphasize that the use of bilinear forms seems to
be quite reasonable from the physical point of view. It can be argued in the following
way.

First, the phase information is transmitted from the quantum source (atom) to
photons via the conservation laws. In fact, there are only three physical quantities
which are conserved in the process of radiation: energy, linear momentum, and
angular momentum [26]. All of them are represented by the bilinear forms in the
photon operators.

Second, the detection process is also based on the transmission of energy, linear
momentum, and/or angular momentum from the photons to a detecting device [ 141.
In other words, the Hermitian bilinear forms in (84) corresponds to what can be
emitted by the source and detected by a photodetector.

Let us stress that the operational definition of the quantum phase of radiation [47]
is also based on the use of bilinear forms in the photon operators. In the simplest form,
the idea of the operational approach to the phase difference can be illustrated with
the aid of the two-port interferometer shown in Fig. 11 (see Refs. [14,47]  for more
detailed discussion). The two incident monochromatic (or quasi-monochromatic)
light beams are combined by a symmetric beam splitter oriented at 45’  to each
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beam. The resultant intensities emerging from each output port are measured by the
two photodetectors connected with a “comparator” (computer) like in the Hanbury-
Brown-Twiss interferometer [85] (also see Refs. [14, 15, 861).  Following [47],
denote by al  and a2  the photon annihilation operators, describing the field at the two
input ports, and by as and a4 the corresponding operators at the two output ports.
T h e n

a3 =  tal +  #a2,

a4 = ral  + t’a2,

where t and r denote the complex-amplitude transmittance and reflectance from one
side of the beam splitter and r’ and t’ from the other side. The number of photons in
the output modes is defined as follows

where iit E atal. It is clear that

ii4  - fi3  = exp[i  argr  - argr’)] a,+a, + exp[i(argt’  - argt)]afaz.

Hence, the sine and cosine of the phase difference between the two output beams can
be defined as follows [47]

SM = Ki(exp[i(argr  - argt’)]azal  + exp[i(argt’  - argr)]afa2),

CM = iKs(exp[i(argr  - argt’)]a$ai  - exp[i(argt’  - argr)]afa2),

where Kr  and Kz are some constants. It is clear that, apart from the exponential
factors caused by the measuring device, the above equations for SM and CM have
the operator structure similar to the cosine and sine operators of the radiation phase
(82). Of course, the above discussed operational definition by Mandel  et al [47] does
not take into consideration the third component of the multipole radiation. Therefore
the operators (104) do not commute with each other.

By virtue of the above discussion, one can conclude that the method of radiation
phase , defining the quantum phase variable in terms of what can be emitted by the
source, complements the operational phase which deals with what can be measured
in a real experiment.

1.4.7 Phase properties of radiation in Fabry-P&t  resonator

Our consideration so far have applied to photons in an ideal spherical cavity. Consider
now the very important case of interaction between a single atom with electric dipole
transition and cavity field in the case of Fabry-Perot resonator formed by two parallel
ideal reflecting mirrors. In this case, the cavity field can consist only of the photons
propagating along the axis of resonator (z-axis) because all other photons should
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leave the space limited by the mirrors. This means that the cavity photons have well
defined direction and therefore they are in a state with given linear momentum (21),
(22). Hence, the radiation emitted by the electric dipole transition consists of the
two modes with m = f 1, while the radiation of the third mode m = 0 is forbidden.
In this case, the photons with given helicity can be represented in terms of linearly
polarized photons as follows [27]

Since the atom-field interaction in the Fabry-Perot  resonator is allowed for the two
electric dipole transitions

IL*l) + IO,%

the interaction term in the electric dipole Jaynes-Cummings Hamiltonian (34) takes
the form

Hint  = g c (R,,a,  + a:R,,).
jb=fl

(1.105)

Then, the representation of the SU(2)  algebra corresponding to the excited state in
(105) takes the form

Jz  = (R++  - R+-)/2,
J + = R+-,
J- = R-+ (1.106)

similar to (50). Then, the exponential of the atomic SU(2)  phase operator takes the
form

E = R+ + ei*R- +7 (1.107)

such that

EE+=R+++R--=l

a n d

Here again $  denotes an arbitrary reference phase. The atomic cosine and sine of the
phase operators (42) are defined in the case under consideration as follows

C = (R+-ewi+i2 + R-+ei*12)  ~0s  f = Ee-itil/z  cos E



,‘j’ = (R+-e-i$/2  + R-+ei~12)  sin  g = ee-“*i2  sin  $. (1.108)

It is clear that  these are commuting Hermitian operators.

In analogy to (45) and (46), we can define the atomic phase states as follows:

I&)  = -jj(il, +1)  + f+rll,  -l>>, (1.109)

where

4P  = 11,  + (l-  p)*2 ’
p=fl. (1.110)

It is seen that, apart from a factor of e‘@I’, the states (110) formally coincide with
the EPR states (49). It is clear that the operator (107) is represented in terms of states
(109) in the diagonal form

(1.111)

(cf. (66)).

Following the approach discussed in Section 4.1, we note that the field counterpart
of ( 106) is provided by the operators

M, = (a$+  - ~+a-)/2,

M +  =  ata-,

M-  = a+a+, (1.112)

which form the representation of the SU(2)  sub-algebra in the Weyl-Heisenberg
algebra of photons. As well as (58), this is not an isotype representation. In analogy
to (63), we introduce the field counterpart of (107)

E,.a,j  = aza-  + e’+a+a+. (1.113)

It is easy to verify that (113) complements the atomic operator (107) with respect to the
integral of motion with the Jaynes-Cummings Hamiltonian (34) with the interaction
term of the form (105). In analogy to (82), we introduce the cosine and sine of the
radiation phase operators:

such that

c r-ad = K(&,+,,  + ~,.,d)  = 2KediQ”E,.,d  cos $,

S 1cI
r a d = ~K(E:,~  - &,,d)  = 2Ke-i’lr/2E,,d  Sin 2, (1.114)

[Grad, &ad]  = 0,
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[(c +  &ad),  H]  =  [(s  +  St-ad),  H]  =  0.

Then, the condition (83) takes the form

(cjfad  + s,“,,) = 4K2e-i’(&~,d)  = 1. (1.115)

In analogy to (66), the operator (113) is diagonalized by the canonical transformation
of the form

a, = se -w44r/2ap,,

/d-*1

ap  =
5 B'=*lec

i(l-dM,P a/J? (1.116)

where 4, is the phase variable (110).

Taking into account the equation (104),  expressing the photons with given helicity
in terms of linearly polarized photons, it is easily seen from (116) that we get

a +  = -a,E”*l’, a-  = -ia,e-i@/2.

Hence, the dual representation of the photon operators (104) with given helicity
coincides, apart from certain unimportant factors, with the photon operators with
given linear polarization. In the representation (116), the operators (113) and (114)
take the diagonal form

Si$ = 2K c aza, sin &, cos s, (1.117)
p=fl

where the phase variable 4, is defined in (110). Since the condition (115) can now
be done in a straightforward manner to yield

K = 1

2 cos(~/2) J7giyx3
(1.118)
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the expressions for cosine and sine operators in (117) take the form

CL2  = ;gy&,

s!f!  =
C, a$,  sin b

(1.119)

This representation explicitly manifests the structure of the cosine and sine operators
in terms of cosine and sine of phase variable (110).

In analogy to (72), (74) we now construct the dual Fock  number states

(1.120)

Here V~ is an integer such that

and the states in the  right-hand side correspond to the  photons with given helicity.
It is easy to show that the states (120) obey the orthonormality and completeness
conditions.

Following the  method described in Section 4.3, we introduce the state

Wad’>  = @ I%J (1.121)
IL=*1

(see (78)),  which can be interpreted as the radiation phase state in the resonator under
consideration. For a given total number of photons n = C,,  u,,, there are n + 1
different phase states with degenerated “eigenphase”

pnl  = 5 + 2er, e=i,-.,n+i.

This result is obtained by analogy with (79)-(81).  Thus, unlike the case of spherical
cavity, the spectrum of the SU(2) phase of photons in the Fabry-Perot resonator is
trivial.

To complete the comparison with the previous results obtained in Sections 4.3 and
4.5, let us average the cosine operator in (114) over the states with two circularly
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polarized coherent modes ICY+,  o-).  We get

(Grad)  =
5-‘la+  I I= I cos@+-  + @PI

la+]” + la-l” + 41a+121a-)2 cos2(A+-  + $/2)
cos g.  (1.122)

It is clear that

in the “vacuum limit” (CQ ( + 0 independent of I+!J,  and

(Grad)  + cos  f  ,

in the classical limit Ja,t  I + 00. The behaviour of corresponding variance is shown in
Fig. 12 and Fig. 13 in the cases of (a+ ( = Icr- I E lo.1  and fixed IL I respectively. It
is seen, that the variance shows the “normal” behaviour and that the “phase bunching”,
discussed in Section 4.3, does not exist in the case under consideration. In contrast
to (90), the presence of the component p = -1 in the quantum state (IcL(~ < 1)
leads to the decrease of fluctuations.

1.4.8 Resume

(i) There is no isotype representation of the SU(2)  sub-algebra, describing the angular
momentum of radiation, in the Weyl-Heisenberg algebra of photons. Therefore, the
SU(2)  quantum phase of angular momentum of radiation field cannot be constructed
in the same way as that of aquantummechanical system with finite number of degrees
of freedom.

(ii) At the same time, the conservation of angular momentum in the process of
radiation makes it possible to map the atomic phase variable into the field variables
via corresponding integrals of motion.

(iii) The Weyl-Heisenberg algebra of multipole photons allows the dual repre-
sentation in which we deal with the photons with given radiation phase (the SU(2)
phase of angular momentum) instead of standard photons with given projection of
the angular momentum.

(iv) Through the use of the dual representations of the atomic and field operators,
it is possible to construct an equivalent form of the Jaynes-Cummings Hamiltonian,
describing the exchange of the “phase information” between the atom and radiation
field.

(v) The radiation phase of multipole photons has discrete spectrum in the interval
(0,27r).  In the classical limit of high-intensity coherent field, the eigenvalues of the
radiation phase are distributed uniformly over (0,2n).

(vi) The quantum fluctuations of the radiation phase manifest qualitativedifference
from those calculated within the Pegg-Barnett approach. In particular, the “phase
bunching” effect can be observed for a multipole radiation in a spherical cavity in
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the quantum domain of low intensity. This effect does not occur in a linear cavity
(Fahry-Perot resonator).

(vii) Our approach, leading to the definition of the radiation phase, is the natural
complement of the Mandel’s operational approach. The radiation phase is defined in
terms of what can be transmitted from a quantum mechanical system to photon and
vice versa.

1.5 POLARIZATION PROPERTIES OF MULTIPOLE RADIATION

It is not really d$icult  to construct a series of inferences, each depends upon its predecessor
and each simple in itse&

-Sir Arthur Conan  Doyl:  The Dancing Men

1.5.1 Polarization of classical field

In previous Sections, we considered the polarization as a formal property of either
plane or spherical waves of photons described by the corresponding index in the
expansion (13) and (17). In this Section, we examine the quantum properties of
polarization in more details. In particular, we show that the radiation phase of electric
dipole radiation formally coincides with the inherent quantum phase of polarization
which is the W(2)  phase of spin of photons.

It is well known that the polarization measurements play an important role in optics
and spectroscopy (e.g., see [87]). The description usually given of the polarization is
a classical one, defining the polarization as a measure of transversal anisotrophy  of
the plane electromagnetic waves [57]. It is based on the fact that the field strengths
(11) have only two symmetric spatial components. At the same time, these complex
components may have different magnitude and phases. The quantitative description
of polarization is provided by the so-called polarization matrix with the elements
[14,571

(1.123)

Here Eb(q  denotes the component of the positive-frequency part of the classical
electric field strength. For monochromatic plane waves, in view of (13) we get

Po,~  = y2a;oako~. (1.124)

By definition [ 14,25,57],  the diagonal elements in (26) and (27) give the contribution
of the corresponding spatial components of the radiation field into the energy density,
while the off-diagonal elements give the “phase” information concerning the phase
difference between the components.
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The+polarization  matrix (124) can also be represented in the helicity basis (16) at
?a = k/k  as follows

Ppp~ = y2a;,ak,~, (1.125)

where p, 11’ = f 1 and

(1.126)

It is seen from (123)-(  125) that P is the Hermitian (2 x 2) matrix. In spite of the
position dependence of the mode functions in (13), the elements of (124) and (125)
have the same value everywhere. This means that the polarization is the global
property of classical plane waves.

In contrast to the plane waves, the field strengths of the multipole radiation can have
any direction. In fact, the electric multipole radiation obey the condition fl. r’ = 0,
while it can have nonzero longitudinal component (c.  r’ # 0) of the electric field
strength [25]. In other words, this is the transversal magnetic radiation. In turn, the
magnetic multipole field is characterized by the relations

E’. r’= 0, IT.  r’# 0.

Hence, the polarization of either multipole radiation should be specified by the spatial
anisotrophy of the field strengths rather than the transversal anisotrophy as in the case
of plane waves [28,46,54,88].  Thus, the polarization of the classical multipole field
should be described by bilinear forms in all three components of the field strengths
which leads to the Hermitian (3 x 3) matrix with the elements [28,46]

PCE)(fl  =E;(fjEp(qPP' 7 p,  p’  = *1,0. (1.127)

Here we again consider a monochromatic radiation field. Let us stress that this
expression describes the spatial anisotrophy of the electric field and therefore specifies
the polarization of the electric multipole radiation. In the case of magnetic multipole
radiation, the spatial anisotrophy of magnetic induction can be described by the
following polarization matrix [89]

(1.128)

Consider now the monochromatic multipole field with given X and j. Exactly this
field is emitted by an atomic transition. Employing (21) and (17) then gives

p(E)  -
w' - k2  c V~kjmCc(T3VEkjm’~‘(~a~kjm~aEkjm’~1,

I

PcM)  = k2  mf v~kj,,+(~vEkjmlp'  (?)a~kjm,,aMkjmtp!. (1.129)
mm’
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Thus, the difference between PtE)  and Pc”) lies in the definition of the complex
field amplitudes, while the position dependence is described in the same way. Within
the classical picture, these amplitudes are defined differently in terms of the source
functions [25]. For example, if the source of radiation is represented by the harmon-
ically varying current J’(r’,  and intrinsic magnetization M(r3,  the field amplitudes
for the electric radiation are determined by the integral of the function

over the volume of the source localization, while those for the magnetic radiation by
the integrals of

It should be mentioned here that the quantum multipole radiation, defined in terms
of the source, has been considered in [56].

In direct analogy to the case of plane waves, the diagonal elements of (129)
describe the contribution of the components of the field strengths into the energy
density. The off-diagonal elements give the “phase information” about the phase
differences between the spatial components with different polarization. Unlike the
plane waves, there are three phase differences [46,54]

In view of the evident equality

A+,+A,-+A+  =O,

valid at any point r’,  only two of the phase differences A,,,,  are independent.

In contrast to (124) and (125),  the polarization matrix (129) of either multipole
radiation depend on the position with respect to the source (origin). Since the compo-
nent Ap=,-,  vanishes at far distance much faster than the two transversal components,
the polarization in the so-called far zone (Icr  >>  1) is similar to that of the plane
waves.

In addition to the Hermitian polarization matrix with complex elements, the spatial
anisotrophy of the electromagnetic field can be described by an equivalent set of real
Stokes parameters [ 14,571.
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The classical Stokes parameters of plane waves are usually defined in the linear
polarization basis as follows 1

(1.130)

In the helicity basis (16) we get

(Plane)
SO =  IE-I”  +  IE+12,

(plane)  _
Sl - -2Re(E;E-),

(Plane)  _
s2 - 21m(E;E-),

(plane)
s3 = IEel  - IE+j2, (1.131)

where Ep  3 j& . E. It is clear that the parameter spane)  measures the relative
intensity of the wave. At the same time, the expressions (130) and (131) show a
rearrangement of the roles of the Stokes parameters with respect to the two bases.
The parameter syane) in (130) gives the preponderance of the z-linear polarization
over the y-linear polarization, while in (13 1) it concerns the phase difference between

(plane) .the two components with opposite helicities. The parameter s2 in (130) gives
the cosine of the phase difference between the linearly polarized components, while
in (131) it gives the  sine of the phase difference between the circular polarized

(plane) .components. In turn, the parameter s3 m (48) specifies the sine of the phase
difference in the Cartesian basis with linear polarizations, while in (13 1) it gives the
preponderance of polarization with negative helicity over positive helicity.

Consider now the  set of classical Stokes parameters of the monochromatic pure
(X,  j)-pole radiation. Since the polarization, in this case, is described by the Hermitian
(3 x 3) matrix (127),  the set should consist of nine Stokes parameters because all
three spatial components of the field strength contribute into polarization [46]. For
definiteness, let us consider the electric-type radiation. To establish a contact with
the previous result (13 1), we choose the set of Stokes parameters as follows [46]

Sl(mu’ti)(~ = -lRe(E$Eo  + E,*  E- + ET  E+),

s$~~~~~)(F’)  = 2lm(E;Eo  +  E,*E- +  E:E+),

s3(nulti)(F)  = JE-12  - IE+12,

‘Unfortunately, there is no uniform notations for the Stokes parameters. Our notation is that of Ref. 1571.
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s5(mu’ti)(?‘j  = -2Re(EJ.E-),

s~muzti)(~  = 2Im(E;E4,

37(mu’ti)(q  = -2Re(EzE+),

sL~~‘~~)(F)  = 217n(Eo+E+). (1.132)

They have very simple physical meaning. The parameter SO measures the contribution
of all three components into the energy density. The parameters st  2  5  s 7  s giveP , , 1 3
the phase information about the phase differences between the circular and linear
polarized components. The parameter ss  gives the preponderance of negative helicity
over positive helicity and the parameter s4  gives the preponderance of transversal
circular polarization over linear (radial) polarization. Unlike (131),  the multipole
Stokes parameters (132) describe the local properties of polarization due to the
position dependence of the mode functions (18). It is clear that, at far distances
(Icr  >>  1) when E-, is negligibly small in comparison with Ek,  the set (132) formally
coincides with (13 1) because

in this limit.

1.5.2 Polarization of quantum radiation

The quantum counterpart of the polarization matrices can be constructed in direct
analogy to the field quantization [90]. We have to subject the field amplitudes in
(124),  (125),  and (129) to the Weyl-Heisenberg commutation relations (22) and (23)
respectively. Thus, we get the operator matrices of polarization of the multipole
radiation of the form

pm)  _

w'  -
k2  c VEkjm~(T3VEkjm’~‘(T3a~kjmC1aEkjmt.’,

mm’

pw4  _
w’ - k2  c Vikjmp  (3VEkjm’p’  (gahkjmaMkjd. (1.133)

mm’

These are the Hermitian (3 x 3) matrices with the operator elements defined in terms
of the normal order of the creation and annihilation photon operators.
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To clarify the structure of (133) and establish a contact with previous results for
the radiation phase, consider now the bare operator form of kcE+)  in (133) in the
case of the electric dipole radiation in a spherical cavity. The bare operator structure
is provided by the limit lcr  + 0 in the mode functions (18). This means that we
consider the polarization of radiation directly near a source. Using the properties of
spherical Bessel functions discussed in Subsection 3.1, we get [28,46]

where ‘y~i  is an unimportant normalization factor.

Consider now the set of Stokes operators which can be obtained by canonical
quantization of (132). On the other hand, the Stokes operators should by definition
represent the complete set of independent Hermitian bilinear forms in the photon
operators of creation and annihilation. It is clear that such a set is represented by
the generators of the SU(3)  sub-algebra in the Weyl-Heisenberg algebra of electric
dipole photons. The nine generators have the  form [46]

(a$+  - ~~~0) (c&Q  - a-tap) (ah-  - I++)

2’a&l + a&i+) p&L  + atao) p+a+  + .~u-) (1.135)
2 (a$&)  - a,‘u-) &&- - atao> &z&l+  - a$-)

and only eight of them are independent. To simplify the notations we omit here the
indexes E, k, and j = 1. To get the set of Stokes operators, we have to use the
generators (135) or independent linear combinations of this generators together with
the operator

I

S O  =  C a$,, (1.136)
V&=--l

describing the total number of multipole photons. It seems to be natural to choose
the rest of the set of Stokes operators as follows [46]

s1 =
sz =
s, =
s4 =
s5 =
5-0  =
ST =
$3  = (1.137)

Here the operator &rad  is defined in (63). Thus, the operators Si and Ss in (137)
coincide, apart from a normalization factor, with the cosine and sine of the radiation
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phase  operators  (82). It seems to be  natural.  By construction,  the  operators Si and
S2 give  the  “phase  information” about  the  phase  differences A,,#  defined in the
previous  Subsection.

Additional  phase  information  is provided  by  the  operators  Ss-Ss  in (137).  To
clarify  the  physical  meaning of  the  “phase-dependent”  operators  in (137),  let us
average  them  over  the  two-mode coherent  state  (85) at  IQ+)  = (cr-) z (cr].  We  get

2b12 atL  = 0,3

(Se)  =
21a12  cos  A+- at  C  = 1
21~~)~  sin A+- ate  = 2

(1.138)

0 otherwise

Here

A+-  z arg (Y+ - arg  (Y-

as  in Section 4.3. It is seen  that  the  first  two averages  in (138)  formally  coincide with
the  conventional  phase-dependent  Stokes  parameters defined  in the  helicity basis
(131)  [25, 571.  Hence, the  Stokes operators  Si and  Ss give  the  cosine  and  sine  of
the  radiation phase  while  the  operators  Ss-Ss give  the  cosine  and  sine  of  the  phase
differences Aa&  between  the  linear and  one  of the  circular polarizations. Since

[Sl,S21  = 0, [Sl,SO]  = [S2,So]  = 0, (1.139)

the  operators  5’1  and  Ss form the  Cartan  algebra in the  SU(3)  sub-algebra (135)  of
the  Weyl-Heisenberg  algebra  of  multipole  photons.

The  remaining  Stokes operators  So,  Ss,  and  Sd in (133)  and  (134)  also  have
simple  physical  meaning.  In fact,  So describes  the  total  number of  photons  (inten-
sity),  Ss gives  the  preponderance of  positive  helicity over  negative  helicity,  and  S,
defines  the  preponderance  of transversal  circular polarization over  longitudinal linear
polarization.

In spite  of  the  formal coincidence between  the  Stokes  parameters (138)  and  those
obtained  by  quantization of  (13 1) and  further  averaging  over  the  coherent state  (85),
there is also  a essential  difference. Consider,  for  example,  the  variances  of  the  Stokes
operators  Si and  S2 in (137):

((A&)2)  = 21a12(2  + cos  A+-),

((AS2)2)  = 2)o12(2 - cos  A+-). (1.140)

In turn,  the  variances  of  the  corresponding  Stokes  operators  describing the  phase
properties of  plane  waves  of  photons  in the  two-mode coherent  state  (85)  have  the
form

((AS,)“)  = ((AS2)2)  = 2(o12. (1.141)
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Hence, the quantum fluctuations of the physical quantities, describing the phase
information in the Stokes parameters, are much stronger in the case of multipole
radiation in comparison with the case of plane waves of photons. Moreover, they are
qualitatively different because of the phase dependence in (140).

One more difference follows from the fact that, due to the condition (139),  the
physical quantities described by Sr and Sa in (137) can be measured at once. At the
same time, the operators, obtained by quantization of Si , Ss,  and Ss in (13 l), form a
representation of the SU(2)  algebra which excludes the possibility of simultaneous
measurement of corresponding physical quantities.

1.53 Spatial properties of polarization

Our consideration of polarization so far have applied to the bare operator forms,
corresponding to the normal-ordered polarization matrix and Stokes operators at the
source location when r + 0. In reality, (133) describes the position dependent
operator polarization matrix of the multipole radiation. In addition to the normal-
ordered form of the operator polarization matrix (133),  one can define the anti-normal
form:

pw4  =I+’ k2  c V~kjm~((j;?VEkjm’~‘(~aMkjm’~‘a~kjmC1.  (1.142)

It is seen that, in view of the commutation relations (23), the difference

2
c vikjmp  (q&kjmp’  (3 (1.143)

m

defines the zero-point or vacuum oscillations of the components of the polarization of
either multipole field [22,91].  In fact, the matrix elements of P(O)  in (143) coincide
with the commutators of the type of

The trace of (143) coincides, apart from an unimportant factor, with the zero-point
fluctuations of energy (29).

It is seen from (143) that the vacuum polarization matrix is independent of index
X, describing the type of the multipole field. It seems to be natural, because the
vacuum properties are affected by the presence of the singular point (atom) without
respect to the type of radiation which might be emitted.

A similar object can be constructed in the case of plane waves of photons. In
analogy to (133) and (142)  we can construct the quantum counterpart of (123) and
corresponding anti-normal operator polarization matrix. Then, using the commuta-
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tion relations (22) and definition (143),  we get

p(O) _  2’+“k
plane

- -
V (1.144)

In contrast to (143),  this is a diagonal matrix independent of the spatial variables.
Hence, in exactly the same way as the  zero-point oscillations of energy density, the
vacuum fluctuations of polarization in empty space has the global nature, while those
in the presence of the singular point manifest certain spatial inhomogeneity.

It is intuitively clear that the spatial properties of the vacuum noise of polarization
described by (143) should be determined by the distance T from the source inde-
pendently of the spherical angles 0  and 4. In fact, all directions from the singular
point should be equivalent in the absence of radiation. It is possible to say that the
multipole vacuum state is degenerated with respect to the directions from the source
or is invariant under rotations about an arbitrary axis, passing through the source.
This degeneration is taken off by the generation of radiation of a given type X and
with given j and m, which causes the  characteristic radiation pattern [25].

Consider first the polar direction when 8 = 0 in (18). Then, due to the known
property of spherical harmonics [70]

the mode functions in (19) are independent of the spherical angle 4. Consider pure
electric multipole radiation with given j. Then, the corresponding polarization matrix
in (33) takes the form

where

It is seen that  the photon operators with jm( 2  2 do not contribute into the polarization
of radiation in the polar direction even if j 2  2. It is straightforward to calculate the
elements of the vacuum polarization matrix (143) at 0 = 0:

(1.146)
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Thus, the vacuum noise of polarization in the polar direction is represented by the
diagonal matrix. Since the vacuum noise of polarization is supposed to be independent
of the direction in the space, the matrix (143) can be put into the form (146) by a
proper transformation of the reference frame spanned by the base vectors (16). We
h a v e

u(F)P(O)(qJ+(q  = P(O)(r) > u+(qJ(q  = 1. (1.147)

As a result of this transformation,

Here

0 0
PL (I-) 0

0 pT (r)
(1.148)

a n d

PT(r)  = k2 2 lFj*(T)12, PL(r)  = k2 2 jFj0(r)[2.
j=l j=l

The element PT  describes the vacuum noise of transversal (with respect to F) circu-
lar polarizations with positive and negative helicity,  while PL  gives the zero-point
oscillations of linear polarization in the longitudinal direction (along r?).  The explicit
form of the unitary transformation (147) is

(1.149)

Here D,,I  (3 is expressed ’m t erms of the elements of matrices (143) and (148) as
follows

D+o  = +(PT - p!“!)  + )(“)P+-12],

D+- = -&P,(D’(P~-  p$OJ,+pio,)*p~~],

Do+ = &P!!(PL  - P$‘)  + lP,(o)j2],

Do- = -$[P$?(P,  - P$)  + p~Jp,(o)],

D-+ = &~‘(pT  - pi!) + P;o)Pyp],
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where

F+ = (Pg*Po  -PypPp)

F. = (Py;P(o?  -Po("'*P!"l,  '

F- = (Py?P$*  -P,'"'Ppj):

It follows from the structure of (148) that the vacuum noise of transversal (with respect
to r3 polarization described by PT is independent of helicity.  At the same time, the
transversal and longitudinal vacuum noise show different behaviour as functions of
distance (see discussion at the end of Section 2).

To illustrate the spatial properties of the polarization of multipole radiation, con-
sider now the normal-ordered operator polarization matrix (133) in the case of
monochromatic electric-type pure j-pole radiation. Assume that the radiation field
is in a single-photon state 1 lm) with given m. Then, the average of (133) takes the
form

It is seen that the state with given m contributes into the polarization with different
p.  For the variances of the elements of the polarization matrix we get

([Ai;;;") (tq2)  E (P#$+'",  - (qy')"
= k4V,$kjmpVEkjmp’  C V~kjmtpVEkjm’p’-

?d#m

It is also seen that the vacuum fluctuations of the field with m’ # m contribute
into the quantum noise of polarization of the mode with given m. Similar results
can be obtained for the position dependent Stokes operators obtained from (132) by
canonical quantization.

1.5.4 Operator polarization matrix in the proper frame

We saw that an appropriate choice of a local reference frame leads to the diagonal
representation (148) of the vacuum polarization matrix (142). The use of the unitary
transformation (147) allows the operator polarization matrix (142) to be cast into the
form

(1.150)

where

--
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a n d

(1.152)
p’S.1 m=-j

Similar representation can be constructed for the magnetic-type operator polarization
matrix in (142) as well.

It is clear that, in view of (22), the operators (152) obey the commutation relations

Here PP=+  3  PT  and Pp=,-, z PL  are the matrix elements of the diagonal vacuum
polarization matrix (148). The representation of the Stokes operators in the proper
frame can be constructed in the same way.

We now note that the only difference between (153) and commutation relations
(23) is the presence of position-dependent factors in the right-hand side of (153). It
seems to be quite tempting to introduce the normalized local operators

which obey the standard Weyl-Heisenberg commutation relations

(1.154)

at any point T’.  Hence, the local transformation (152),  representing the components
of the operator vector potential in the proper frame, can be interpreted as a local
Bogolubov canonical transformation [80], conserving the commutation relations. In
fact, the equations (152) and (154) describe the transformation of global multipole
photon operators oXkjm with given m = -j, . . . , j intothe  local photon operators
bAkjp  (F’)  with given polarization p = 0, fl at any point of the space.

Due to the form of the operator polarization matrix (142) and corresponding
Stokes operators, the polarization, defined to be the spin state of photons [4,  271,
is not a global property of the quantum multipole radiation. Any atomic transition
emits photons with given quantum number m which yields, in view of (18), (24), and
(142),  the polarization of all three types depending on the distance from the atom.
The structure of (152) and (154) just shows us how the photons with different m
contribute into the polarization at an arbitrary point r’.  Using the operators (154),  we
can construct, for example, the local bare operator representation of the polarization
matrix (142) as follows

Pz:“‘(fJ  = b$kjp(flbEkjp’q, (1.156)
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as well as of the Stokes operators 2  :

Sl(3  =

Sz(fI  =

S3(T3  =

S4(T3 =

&(yl  =

&(q =

S7(T3  =

S&?(fl  =

where

.qq s  b;(f)bo(q  + bo+(?=)b-(3  + bpT=)b+(F). (1.158)

It is seen that (157) has the operator structure and algebraic properties similar to
(136)-(137).  At T + 0, the set (157) exactly coincides with (136)-(137).  Due to the
commutation relations (155),  the operators (157) have the same algebraic properties
as (136)-(137)  at any point. In particular, we can construct the local representation
of the radiation phase operators in the same way as in Section 4, using the  operator
(158) instead of (63). By construction, this gives us the SU(2)  quantum phase of
spin or polarization with  the properties described in Section 4.3.

Let us stress a very important difference between the representations of Stokes
operators (137) and (157). If the former is valid only for the electric dipole photons,
the latter describes an arbitrary multipole radiation with any X and j. The similarity
in the operator structure and quantum phase properties is caused by the same number
of degrees of freedom defining the representation of the N(2) sub-algebra in the
Weyl-Heisenberg algebra.

1.55 Resume

(i) The polarization is described by a bilinear forms in the field components corre-
sponding to the spin states of photons. In general, the polarization is defined by nine
physical parameters (operators, in the quantum picture). In the case of plane waves
of photons when only two spin states are allowed, the polarization is specified by
only four parameters (operators).

2Hereafter  we omit alI  unimportant indexes.
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(ii) The set of Stokes operators in the general case corresponds to a representation
of the SU(3) sub-algebra in the Weyl-Heisenberg algebra of photons. In the case of
plane waves of photons, it reduces to the representation of the SU(2)  sub-algebra.

(iii) The SU(2)  quan urn phase of spin (polarization) of photons described in at
proper reference frame coincides with the radiation phase of electric dipole radiation
discussed in Section 4.

1.6 MEASUREMENT, LOCALITY AND CAUSALITY

And then he would have lost sight of the mark he had made on the wall, where the nail
was to go in, and each had to get up on the chain besides him, and see ifwe  couldjnd  it;
and we would each discover it in a dtrerent  place, and he would call us all fools, one after
anothel;  and tell us to get down. And he would take the rule, and re-measure, andjnd  that
he wanted half thirty one and three-eights inches from the comet  and try to do it in his
head,  and go mad.

-Jerome K. Jerome: Three Men in a Boat

1.6.1 Measurement and photon localization

It was indicated in Introduction that, in spite of the fact that the photon operators
refer to the radiation field in all space, it looks tempting to interpret the electronic
signal registered by a photodetector as due to a photon localization in a vicinity
of the sensitive area of this detector. The corresponding operational definition of
localization has been done by Mandel [20] (also see [ 14, 15, 921).  It is based on the
consideration of a plane wave of photons, being absorbed by the sensitive area s of
photodetector during some finite time AT.  Then, it is natural to interpret this process
as a measurement of photons located in a cylindrical volume V = s . (AT) (Fig. 14).

Following [ 141,  we introduce a photon absorption operator at the point T’at  time t
as follows

(1.159)

Here 7 is the normalization factor, ak,, are the operators (21)-(22),  and summation
is taken over a finite set of modes to which the detector responds. The so-called
conjigigurution  space number operuror  [ 141 is defined by the relation

(1.160)
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where the integral is taken over the volume of photon localization. The operators
(159) and (160) obey the following commutation relations [ 141

wo4  t>7  W’,  t)l  = 0 (1.161)

a n d

(1.162)

Let us stress, that (162) has an approximate sense.
There is a principal difference which makes difficult the direct use of the operation

approach to the problem of localizing photons in the case of multipole radiation. The
point is that the multipole photons are in the state with given angular momentum
and therefore they have no well defined direction of propagation. In view of the
wave-particle dualism, one can say that the multipole photons emitted by a point-like
quantum source propagate as outgoing spherical waves. Definitely, these photons are
localized initially inside the source.

Consider a model of Hertz-type experiment on emission and detection of a mul-
tipole photon in the system of two identical atoms separated by a distance d. If
we assume that a photon is first emitted by the atom number one (source) and then
absorbed by the atom number two (detector), it is most natural to consider the field
as a superposition of outgoing and incoming spherical waves focused on the  source
and detector respectively (Fig. 15). This superposition should obey the boundary
conditions for the real radiation field. Then, in analogy to (159) and (160),  one can
construct a configuration space photon number operator via the integration of the
corresponding local operator over the spherical volume of radius CAT,  surrounding
the detecting atom. Here AT  is again the detection time.

Taking into account that (159) is nothing but the positive-frequency part of the
vector potential (21),  we can introduce the multipole photon absorption operator as
follows

which coincides with (24) apart from the fact that the sum is taken over the modes
allowed by the selection rules. Here the mode function is defined by the equation
(18) with the radial part (19) corresponding to the incoming spherical wave. Then,
the configuration space multipole photon number operator takes the form

N(V,  t) =
s

S+(F, t) - S(f, t)d3r,
V

similar to (162). Here the volume of detection is
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where r, is the atomic radius. We have to exclude the “volume of generation”
occupied by the atom to avoid the divergence at r + 0 in the case of outgoing and
incoming spherical waves of photons. By virtue of the transformation (152),  we can
rewrite it as follows

N(V,t)  =
s

A+(?,  t)  . sl(r’,  tp3r,
V

(1.163)

where the definition of the components of A differs from (152) by summation over
all allowed modes.

Taking into account the properties of spherical harmonics [70], Clebsch-Gordon
coefficients [71], and spherical Bessel and Hankel functions [70], it is possible to
show that the mode functions in (18) obey the following condition of symmetry:

Then, it can be easily seen that the commutation relation (161) is valid for the
operators N as well:

[N(V,  t), N(V’,  t)] = 0.

The commutation relation corresponding to (162) is less simple. It can be proven as
an approximate one.

Thus, the picture of measurement in the atom-detector system of two identical
atoms is compatible with Mandel’s operational approach to the photon localization.
For example, the multipole photon statistics in finite volume can be examined in the
same way as in [ 14,201. The commutators for different t can also be constructed in
analogy to [20].

Nevertheless, there is one important difference. The point is that the zero-point
oscillations of multipole field are concentrated in a vicinity of the atoms, where
they can strongly exceed the level calculated in the model of plane waves in empty
space (see Section 2.2). If the atomic separation is large in comparison with the
wavelength, then a major contribution into the vacuum noise of measurement comes
from the presence of the detecting atom. At the intermediate and short distances, the
vacuum noise in the vicinity of the detecting atom is increased due to the influence of
the source atom via the superposed zero-point oscillations of outgoing and incoming
spherical waves. Since the vacuum noise influences the precision of measurements
(e.g., see [14, 15,58,59,  861)  this fact seems to be very important, especially for the
experiments with trapped Ridberg atoms which are usually separated by distances
corresponding to the intermediate and even near zone [32,66].

Consider now the measurement of monochromatic plane photons by a photode-
tector shown in Fig. 14. At far distances, the photons are specified by a unique wave
vector 7~.  Mandel’s localization of photons in the vicinity of the sensitive area c
assumes that the wave converges to g.  This means that there is a variety of directions
of the wave vectors near CJ  (Fig. 16). This picture can be described by a proper
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expansion over spherical waves. In view of the above discussion, it should lead to an
increase of the vacuum noise of measurement over the level of plane waves as well.

1.6.2 Causality in the two-atom Hertz experiment

In previous Subsection, we considered the field emitted by one atom and then absorbed
by another atom as a superposition of outgoing and incoming spherical waves of
multipole photons. This wave picture completely eliminates an enquiry concerning
the trajectory of photons between the atoms. In fact, the path of a particle in quantum
mechanics is not a well-defined notion. Most that we can state about the path of
a quantum particle in many cases is that it is represented by a nondifferentiable,
statistically self-similar curve [93]. For example, the path of a tunneling electron
and time spending in the barrier are not still defined unambiguously [94]. Moreover,
recent experiments on photonic tunneling and transmission of information show the
possibility of superluminal motion of photons inside an opaque barrier [95].

We now note that, according to the principles of quantum theory, not the path, but
causality in the transmission of information from one object to another is important
[3,10,  11,12,13,31].  In Hertzexperimentwith two atoms separated by empty space,
this means that the detecting atom cannot be excited earlier than in d/c seconds after
the emission of a photon by the first atom. Here d denotes the interatomic distance.
Such a causality has been proven recently by Kaup and Rupasov [96]. Here we
briefly discuss their proof.

In the model experiment under consideration, the field is represented by the out-
going and incoming spherical waves of photons which are specified by a continuous
distribution of k or of w = ck. Assume that the two identical atoms are the two-
level atoms of the type of (34) with the electric dipole transition. Due to the simple
geometry of the problem (Fig. 17), it can be considered as a quasi-one-dimension
integrable system [69]. The effective spatial dependence of the photon operators can
be introduced with the aid of the Fourier transformation

Cm(~) =
/

“l&d’-&-d~am(w),
--M  2x

(1.164)

where a,(w) c ~~~~~ and wc is the frequency of the atomic transition. Due to (23),
the operators obey the commutation relations

[C&),C~,(Z’)] = 6,,d(z - 2’). (1.165)

In analogy to (34), the Hamiltonian of the system under consideration can be repre-
sented as follows
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Hint = &ix C Srn  [@,$c~(x) + c~(x)R$~]s(x  - x~)o!x,
m f=1,2  --OO

/
Oc) c;(x)c,(x)dx  .1 (1.166)

-co

Here fi denotes the coupling constant, index f = 1,2  labels the atoms and xf is
the atomic position along the x-axis (see Fig. 17),  and the operator N describes the
total number of excitations in the system. It is clear that

[N, H] = 0. (1.167)

Using the notation of Section 3.1, we define the ground state of the system

Iground) = Ij’ = 0, m’ = O)f,l  63 Ij’ = 0, m’ = O)f=2 @I  IO)

as the state of two unexcited atoms and vacuum field.

Assume that the first atom is initially excited into one of the sub-levels of the
excited state with a given probability:

lin)  = c p,R$  [ground),
m

c IPm12 = 1.
m

(1.168)

Then, the Schrodinger time evolution is described by the wave function

p(t))  = e-[in). (1.169)

Let us denote by IC,) the eigenstates of the Hamiltonian (166):

WC) = JW. (1.170)

Here, in general, C is a complex parameter. Then, the wave function (169) can be
represented in the following way

p(t)) = J_m_  $(Qe-““yin). (1.171)

To find the eigenstates IC) and eigenvalues E in (170)  we now note that, due to
the initial condition (168),  the states with single excitation only are allowed in the
system. These states, in general, can be chosen as follows

I<) = c ~(~‘(C)R$ + ~~ci’“fm((,x)c+(x)dx Iground).  (1.172)
m f 1
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Employing (170) then gives the following set of equations for unknown functions

MC,  4  and  &f’(C):

i-j-[eiC”fm(~,  x)] + Eeic”fm(<,  x) = J;iC <,f)b(x  - xf),
f

(1.173)

It is seen that the first equation in (173) gives formally a non-physical discontinuity
at x + xf. To avoid this, we have to consider the finite size atoms and change
S(x  - xf) by a smooth distribution function u(x, xf), then solve the equations, and
after that to put U(X,  xf) =  6(x  -  xf). We get

fm(C,x>  = j-J
c -  wk?+ - “f)

f=1,2
c+iqp  ’

p = fi XI1
m C+i77/2e ’

J(2) = c-w?  xl7 i<zz
m [+irl/2C+n?7/2e  ’

where

(1.174)

1 atx > x f

sgn(x  -  Zf) = - 1  a t x < x f
0 a t x = x f

and E = 5, which is real. Thus, the function (172) is completely defined.

Since any two states (172) obey the orthogonality condition

KIC’) = 2x6(< - C’),

and, in view of (17 1) the initial state can be expanded in the following way

for the coefficients in (172) we get

Finally, for the function (172),  describing the time evolution of the system, we get

(1.175)
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This wave function can be used to calculate the evolution of any physical quantity in
the system under consideration. To prove the causality, we have to calculate now the
time-dependent expectation value

describing the evolution of population of corresponding sub-level of the detecting
atom. It is now a straightforward matter to arrive at the following result

vc%J  = lPm12  x { ;zct _ qc)2@qt-d/c) ;;  ;;  d’c (1.177)

(see Fig. 18). It is seen that this average shows the causal behavior.

1.6.3 Polarization measurements

Instead of discussing the well known methods of polarization measurements [87],
we now turn our attention to the fluctuations in the measurement of the parameters
of polarization. Following [97], consider first a fully polarized coherent plane wave
in the weak quantum limit. To measure the Stokes parameters, one can use the
six-port scheme shown in Fig. 19 which reflects the principal ideas of Mandel’s
operational approach to phase measurements [47]. Similar scheme has been analyzed
in [98]. The beam whose polarization is to be measured is firstly split by the non-
polarizing beam splitter SSi. One of the output beams is sent to a polarizing
beam splitter PB&,  which defines two linearly polarized orthogonal polarization
eigenmodes labeled by i = 1,2.  Then, the intensities 11  and I2  are measured by
the photodetectors. The other output beam from BS1  is further split at BS2  with
the purpose of simultaneous measuring the sine and cosine of the phase difference
between the polarized components of the field. One of the output beams from BS2
is analyzed with PBS2,  which is oriented at 45” with respect to the axes i = 1,2
defined by PB&.  The other output beam from BS2  goes through a quarter-wave
plate whose fast and slow axes are aligned along the i = 1,2  directions. This beam
is then analyzed at PB&,  whose axes are aligned with PBS2.

Consider first the measurement of the classical field. Then, for 50% non-polarizing
beam splitters, the detectors di  , . . . ds  measures the intensities

I2 = flE21’7

13 = +I2 + lE212) +~JEII~~E~I~cosA,

14 = ;(lE1/”  + lE212) - 21&121&12  ~0~4
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I5 = a&!&]‘+ )Es12)  +2)Ei12JE212sinA,

15 = ~(]Ei(Z  + l&1”)  - 2(Et12(E212sinA. (1.178)

Here It denotes the intensity measured by the detector dc.  From these relations the
classical Stokes parameters (130) can be found as

(plane)  = I1 + 12,
SO

Syane)  = I1 - 12,

(plane)
s2

= I2 - IA, SF WE) = 15  - IG. (1.179)

Here 1 c) z and 2 +) y. Having defined our measurement in the classical domain,
we next look at the quantum case when the unused ports in the beam splitters are
considered as input for vacuum fields (e.g., see [14]). These vacuum fields are
indicated in Fig. 19 by ve  and we  for BS and PBS, respectively.

The photon annihilation operators associated with the field at the output arms of
PBS1  are related to those at the input through

dl = ?-a1  + tvy  , d2 = 7~x2  + tc?), (1.180)

where T = i/fi and t = l/d  are the field reflection and transmission coefficients,

and ve‘) describes the polarized vacuum field in the f! direction entering through the
vacuum port of BS1  (cf. Section 4.6). The vacuum fields wck)  (k = 1,2,3)  do not
couple with the measured field operators since they are orthogonal to them.

In analogy to the classical definition of the angular functions

sin0 = 2jC$,
1 2

cosS  = e,
1 2

where 8 is related to the elliptic&y angle [87], we define the operators [97]

s,=&E nl - n2

nl + n2

co=-.
nl + n2

(1.181)

Here

ne 3 dzde, e=  1,2

are the photon number operators for the fields measured at the detectors 1 and 2. Due
to the Weyl-Heisenberg commutation relations for the photon operators, we get

[So,Gl  = 0, (1.182)

so that these two quantities can be measured at once. It is also seen that

se”+c;=1.



MEASUREMENT, LOCALITY AND CAUSALITY 69

On the other hand, at the output ports of PB&  and PB&,  the field operators are

d3  = jp(a1 + u2)  + r2(tp  + $1)  + t(?J2)  + rp)],

d4  = +(a1 - u2) + T2(“p  - tp)  + t(vi2) - ?p)],

d5  = &[r2(ia1  + a2) + tr(ilp + tp)  + r(itp  + “p],

d6  = $[r2(da1  - a2) + tr(itp  - @)  + r(iv;2)  - $)I. (1.183)

Then, in analogy to the classical functions

cosA = 13 - 14

J(I3  - 14)2 + (I5  - I#'

sinA  = 16 - 16

,,(I3 - 14)2 + (15  - 16)2'

we get the  operators

CA  =
n3 -  124

(m  -  n4)’ + (n5  -  n6)2  ’

SA =
n5 -  n6

(% -  n4)2  + (n5  -  n6)2  ’

(1.184)

[CA,~A]  = 0.

Here n,l  denotes the number operators constructed from the photon operators (183).

Tt  is now a straightforward matter to calculate the varinnces  of the operators I I8 1 b
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On the other hand, at the output ports of PBS2  and PB&, the field operators are

d3 = ~[(tr(Ul +az) + T2($) + lp) + t(v12)  +tp)],

d4  = &a1  - a2) + T2(tp  - "p) + t(v;2)  - up)],

d5  = $[r2(ia1  + a2) + tr(itp  + ?p) + r(iv;2) + @I,

& = $[r2(ial  - u2)  + TV  - $)) + r(ivi2)  - @)]. (1.183)

Then, in analogy to the classical functions

cosA = 13 - 14

d/(k  - Id2 + (15 - &)2 ’

s i n  A  = 15 - 16

d(b - Id2 + (15  - 16)2 ’

we get the operators

CA  = n3 - 124

cn3  - d2  + (n5  - n6)2  ’

SA  =
n5 - n6

dcn3 - nd2 + (n5  - n6)2  ’
(1.184)

such that

[CA,SAI  = 0.

Here ne  denotes the number operators constructed from the photon operators (183).
It is now a straightforward matter to calculate the variances of the operators (18 1)

and (184) [97]. In particular, it is possible to show that the quantum fluctuations
imply the uncertainty relations

((AS’p’“““)2)((AC~)2)  2 :(,!?A),2

((ASy”““‘)2)((AS~)2)  2 ;@A,, (1.185)

similar, in some sense, to the Susskind-Glogower uncertainty relations [41] and those

of the operational definition of quantum phase [47]. Here Syane)  is the Stokes

operator obtained by the quantization of the Stokes parameter s2(p’ane)  in (179).
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1.6.4 Nondemolition polarization measurement

In previous Subsection, we discussed the polarization measurement through the use
of the detection of the field variables done by photocounting techniques, which are
field destructive. As a result, successive measurements of the field variables yield
different results. It seems to be tempting to use the  measurement schemes avoiding
back action of the detecting device on the detected observable. Such a measurement
is usually called a quantum nondemolition measurement [99]. Here, following our
results [ lOO],  we discuss the possibility of quantum nondemolition measurement of
polarization of the electromagnetic field via the Aharonov-Bohm effect [loll.

First of all, we note that the standard photodetection is a local measurement of the
field variables (intensities). At the same time, the Aharonov-Bohm effect represents
a topological measurement referred to the properties of vector potential along some
loop. In the usual form, the Aharonov-Bohm effect deals with static or slowly time-
varying magnetic fields [loll.  The effect consists in the appearance of a persistent
current in a metallic loop over which the magnetic flux  passes. This current is a
periodic function of magnetic flux with the period of flux quantum he/e.  Besides
that,  certain resistance oscillations in the loop incorporated into an external circuit
with the same period can occur.

An important case of varying magnetic field has been considered recently by
Aronov et al [102] under the assumption that the space dependent time-varying
electromagnetic field produces static electron energy minibands in the loop. These
minibands have been suggested to appear due to electron motion in a time-averaged
electrostatic potential periodic with coordinate along the loop circumference, pro-
duced by the square of time-varying electric field [103].  However, in the quantum
case, an electron reflection form an oscillating potential causes time-dependent phase
shifts resulting in an effective chaotization of the phase of electron wave function,
except at energy multiples of tuJ,  where w is the field frequency.

In our papers [loo],  we considered the case of optical frequencies w > AE//i,
where AE is the width of the electron conduction band of the metal. Under this
condition, the elastic scattering of electrons is prohibited if the separation between
the conduction and higher non-occupied bands of a metal is larger than PUJ.  In this
case, the magnetic component of electromagnetic field represents the  main source
of the electron wave function phase shift. The effect of oscillating magnetic field
results in the modulation of the electron transmission amplitude between the parts of
the loop. Due to the quantum interference of electron waves in oscillating potential,
the dependence of the loop resistance of the time-varying field amplitude manifests
a non-monotone character.

The geometry of the experiment assumes that the magnetic field oscillates along
the axis orthogonal to the plane of the loop circumference and passing through its
center. An example is provided by a small metallic ring surrounding an optical
fiber. In this case, the largest contribution to the conductance oscillations comes
from the TEol  mode of the fiber field [ 1001 (about the fiber modes, see Ref. [ 1041).
Definitely, such a measurement does not perturb the quantum state of the fiber mode.
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Another example is provided by the magnetic dipole radiation, when a longitudinal
oscillating magnetic field can be observed, at least in some vicinity of the source. In
the case of radio-band frequencies, this vicinity seems to be extended enough to make
a macroscopic measurement. As a powerful localized source of such a radiation the
radio-band Dicke  superradiance [ 1051  can be used. The geometry of the experiment
is simplified, in this case, by a characteristic sharp radiation pattern of superradiance
[641.

To make necessary estimations, consider a one-dimensional loop in a tight-binding
approximation with two transmittance amplitudes tl and t2 at the points A and B,
connecting two parts of the ring (see Fig. 20). It is supposed that tl , t2  < to, the
hopping amplitude between the nearest points inside the upper and lower parts of the
ring. The system under consideration is described by the  Hamiltonian [ 1001

H = -to C(a;a,+l  + b,+b,+1)  + H.C.  + Hint,
n

H i n t  = -tlailb,,eiul  - t2a&b,,eiQZ -I- H.c., (1.186)

where a, b are the electron (not photon) annihilation operators. The phases of trans-
mission amplitudes at the contraction points ni are

Qi  = C$ + Ai  sin(wt  + hi),

where a:  accounts for the effect of a static magnetic field applied perpendicular to
the plane of the  ring,

while Ai are the amplitudes of high-frequency field at corresponding points.

The model with the Hamiltonian (186) can be solved exactly [loo].  It is a
straightforward matter to arrive at the  following relation for the current

(1.187)

Here fo (e)  denotes the equilibrium distribution function of electrons, ck  = -2to  cos k,
w*k  is the forward (+Ic)  or backward (-/c) scattering probability, and V is the volt-
age. Then, the conductance G can be found from (187) as follows

G=dJ
dV’

(1.188)

It follows from (187) that the dependence of G on the phase (Y and on the electromag-
netic field amplitude leads to two different effects. First, the oscillatory dependence
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G( @,s)  is the standard mesoscopic interference effect similar to that in static electron
interferometer [loll.  Another type of oscillating dependence G(A) is completely
caused by the time-varying field. The dependence of the conductance on the field
intensity P is shown in Fig. 21. The observation of such oscillations requires low
enough temperatures at which phase-breaking length of electron scattering C+ ex-
ceeds the circumference of the ring L. For the loop size of the order of L = lprrz,
which is technically reasonable, the condition .& > L is valid at T 5 1K.

At L = lpm,  the measurement can be done at the magnetic field B - 10W7T,
which corresponds to the oscillating power P - 10-%1  [loo].  This seems to be not
very high. Estimated in a different way as a minimum number of optical photons
transmitted through the loop, the  field should contain n - l/a  - 137 photons, where
CY  = e2/lic  is the fine structure constant. This estimation corresponds either to an
optical soliton propagating through the fiber [ 1041  or to the superradiant pulse in the
radio-band super-radiance [ 1051.

Thus, the linearly polarized longitudinal component of electromagnetic radiation
arising in corresponding geometry (fiber or localized source) can be measured in
nondemolition way with the aid of the  Aharonov-Bohm effect at optical frequencies.

1.6.5 Resume

(i)Localization of multipole photons at generation and absorption by an atom, de-
scribed in terms of outgoing or incoming waves of photons, is compatible with
Mandel’s conception of localization.

(ii) The photon localization at detection leads to a strong increase of the vacuum
noise in a certain vicinity of a detector (atom or active area of photodetector).

(iii) The two-atom scheme of the Hertz experiment with multipole photons, in
which the radiation field is described by a superposition of outgoing and incoming
waves focused on the emitting and detecting atoms respectively, obey the causality
principle in spite of the fact that the path of detecting photons is indefinite.

(iv) The quantum fluctuations of polarization can be measured in the multi-port
six-detector scheme similar to that proposed by Mandel  for the phase measurements.

(v) The linear polarization of longitudinal component of electromagnetic field
caused by a characteristic geometry of the system (cylindrical geometry in an optical
fiber or spherical in the case of field generated by a local source) can be measured in
a nondemolition way with the aid of the Aharonov-Bohm effect.

1.7 CONCLUSION

Every problem becomes very childish when once it is explained to you.
-Sir Arthur Conan  Doyl: The Dancing Men
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In this paper we have reviewed some recent results concerning the quantum mul-
tipole radiation. Although the representation of quantum electromagnetic radiation
in terms of spherical waves of photons known since the first edition in 1936 of the
famous book by Heitler on quantum theory of radiation [2], where this subject is
discussed in Appendix, this representation is not a widespread one. The spherical
waves of photons are considered in very few advanced monographs on quantum
optics (e.g., see [26]).  The brilliant encyclopaedic monographs [ 14, 151 just touch
upon the subject.

At the same time, the quantum multipole radiation is precisely what the atomic
transitions between the states with given angular momenta emit. The states of multi-
pole (spherical) photons are specified by given angular momentum and projection of
the angular momentum, while the spin state (polarization) is changed in space-time.
On the contrary, the common representation of plane waves of photons is specified by
a given linear momentum and polarization everywhere. This difference reflects the
boundary conditions used in the canonical quantization of the free electromagnetic
field [2].

It was shown in Section 1 that the clear-cut distinction between the symmetry
properties of plane and spherical waves leads to a qualitative difference in the zero-
point oscillations. While the former are homogeneous in the space (along the direction
of propagation), the latter concentrate in a certain vicinity of a local source (atom)
where they may exceed the level calculated in the model of plane waves. Although
the result is simple in itself, to our knowledge, it was indicated for the first time in [46]
and then discussed in [22,29].  Since the zero-point oscillations define the quantum
limit of precision of measurements of corresponding physical quantity [ 14, 15,991,
this result seems to be very important. The estimations based on the results of Section
2.2 show that the zero-point oscillations exceed the conventional level provided by the
representation of plane waves at the distances r 5  0.2X, where A is the wave length.
Within the standard classification, it corresponds to the so-called intermediate zone.
Let us stress that this distance is of the order of the typical interatomic separation in
experiments with trapped Ridberg atoms [32].

One of the major trends of current research is the study of transmission of “infor-
mation” between the atom and photons in the process of emission and absorption. In
particular, the conservation of angular momentum provides the transmission of the
“quantum phase information” in the atom-field system. The atomic quantum phase
can be constructed as the SU(2)  phase of the angular momentum of the excited
atomic state (Section 3). It is shown that this phase has very close connection with
the EPR paradox and entangled states in general. Via the integrals of motion, it is
mapped into the Hilbert space of multipole photons (Section 4.1). This mapping is
adequately described by the dual representation of multipole photons, constructed
in [46] (see Section 4.2). Instead of the quantum number m, corresponding to the
projection of angular momentum, these photons are specified by the quantum phase
index. The spectrum of corresponding quantum (radiation) phase is discrete and lies
in the interval (0,27r).  In the classical limit provided by the high-intensity coherent
multipole radiation, the eigenvalues of the radiation phase are distributed uniformly
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over this interval. By construction, the radiation phase is complementary to Man-
del’s operational phase [47]. It defines the quantum phase in terms of what can be
generated by a quantum local source. In the quantum limit of weak intensity, the
behaviour of radiation and Pegg-Bamett [45] quantum phases is completely differ-
ent. It is caused by the specific truncation procedure used within the Pegg-Barnett
approach, which leads to an effective violation of the Weyl-Heisenberg algebra of
photons.

The radiation phase is closely related to the polarization of the multipole field. In
contrast to the plane waves, the polarization of multipole radiation is specified by
three orthogonal directions of the field oscillations or by three allowed spin states of
photons [28]. Therefore, the polarization is described by the (3 x 3) Hermitian matrix
of polarization (operator matrix, in the quantum case) (Sections 5.1 and 5.2). This
general form of the polarization matrix gives in the limit the standard case of (2 x 2)
matrix in the representation of plane waves. The set of multipole Stokes operators
corresponds to a representation of the SU(3)  sub-algebra in the Weyl-Heisenberg
algebra of photons. The Cat-tan algebra of this SU(3)  sub-algebra corresponds to
the representation of the radiation phase in the case of the angular momentum j = 1.
Thus, the polarization of multipole radiation has a certain inherent quantum phase
which, in some important cases, can be interpreted as the phase difference between
the components with different polarization (Section 5.2). The quantum properties of
polarization can be measured with the aid of the multi-port scheme proposed in [97]
(Section 6.3).

The polarization and quantum phase properties of multipole photons change with
the distance from the source. This dependence can be adequately described with
the aid of the local representation of the photon operators proposed in [91] and
discussed in Section 5.4. In this representation, the photon operators of creation and
annihilation correspond to the states with given spin (polarization) at any point. This
representation may be useful in the quantum near-field optics. As we know, so far the
near-field optics is mainly based on the classical picture of the field (e.g., see [ 1061).

The local representation of multipole photons is compatible with the Mandel’s
operational definition of photon localization [20]. In addition to the localization at
photodetection, it permits us to describe a complete Hertz type experiment with two
identical atoms used as the emitter and detector (Section 6.1). In spite of the fact
that the photon path is undefined from the quantum mechanical point of view, the
measurement process in such a system obeys the causality principle (Section 6.2).
The two-atom Hertz experiment can be realized for the trapped Ridberg  atoms. Let
us stress that such a measurement is closely connected with the problem of atomic
entanglement discussed in [76].

The standard measurement of different properties of quantum electromagnetic
radiation is based on the photodetection, which is field destructive. Following our
consideration of the possibility of the Aharonov-Bohm effect at optical frequencies
[ 1001,  we propose here a new nondemolition method of polarization measurement in
which the linearly polarized longitudinal mode of the field is detected without any
perturbation of its quantum state (Section 6.4). The estimation of physical conditions



C O N C L U S I O N  75

shows that such a measurement can be done either for the photons propagating
through the fiber, or for the superradiant photons in radio-band frequencies.

In this review, we relied to a large extent on our own results. We believe, however,
that this paper covers a number of topics important for quantum optics, and that the
reported results may stimulate an interest in further investigations. Recent success in
the field of quantum optics has convicingly shown that developments in optics have
very often had a direct influence on other fields, both pure and applied.
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Table 1.1 Lit of eigenvalues  (81). Here e = 0, &l.

n=l E(l)  = 1 q(l)  = 2er/3
n=2 E(2)  = 2 p(2)  = 2en  /3

&)  zz 1 c/7(2)  = (2&  + 1)7r/3
n=3 E(3)  = 3 p = 2er/3

d;;  I -fi p) = f(~/2  + en/31
n=4 p(4)  = 2er/3

E(4)  IL2  fi q(4)  = f tan-1(@5)  + 2eT/3
E(4)  = 2 p) = (2e  + 1)43
E(4)  zzz 1 ~(~1  = 2en/3

n=5 &4  = 5 @)  = 2er/3
d5) = &i @)  = tan-l(&/7)  f 2en/3

pc5) = f tan-l  (d/7) + 2er/3
8) = J5 v(5)  = f tan-y&/5)  + x + 2en/3
E(5)  = 2 @)  = 2eT/3
E(5)  = 1 p(5)  = (2e  = qr/3

Fig. 1.1 Contribution into the zero-point oscillations (29) from the terms with j = 1 and in
the case of  an ideal  spher ical  cavi ty  as  a  funct ion of  z = k r .  (b)  The  leve l  (28)  i s  shown by
the straight line.

Fig. 1.2 Contr ibut ion into  (29)  f rom the term j = 1 for  ou tgoing  spher ica l  waves  ou ts ide

the atom with radiusr,  = 1 in arbitrary units. The straight line shows the level of wpane).

Fig. 1.3 Transmission of  information from atom to detector  as  propagation of  the grin of
Cheshire  Cat .  In  the  upper  pic ture ,  the  a tom keeps  informat ion about  exci ted level  (Cat’s
green) ,  In  the  lower  p ic ture ,  the  a tom hands  th is  informat ion  to  a  photon,  propagat ing  to  a
detector.

Fig. 1.4 Scheme of  t ransi t ions  between the  t r ip le  degenerated exci ted s ta te  j = 1, m =
0,&l)  and ground state j’ = 0, m’ = 0) in a two-level atom with the dipole transition.

Fig. 1.5 The s t ructure  of  e igenvalues  (80),  (81)  cor responding  to  the  phase  s ta tes  wi th
n =  1, . . . ,5 photons. The bold lines correspond to the double-degenerated eigenstates.
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Fig. 1.6 The dependence of variances (90) on Icr+I  at fixed [a-l  = 0.275 and A+- =
IT/S.

Fig. 1.7 Probability (93) versus A+-.

Fig. 1.8 Lower estimate of the probability to have the radiation phase cp  = 2n/3  as a
function of 1~~1” at A+- = 2n/3.

Fig. 1.9 Rabi oscillations of the variance of the field cosine operator as a function of scaled
time t, = gt/(2lr,/w)  at rzk = 25 and g = 1. Graphs from top to bottom
correspond to the relative phase A+-. = O', 45",  75", 90°, respectively.

Fig. 1.10 Variance of cosine. The lower curve is for the Pegg-Barnett cosine, the upper curve
is for the radiation phase cosine. Both curves are drawn at A+- = 0 and I- = 0.275.

Fig. 1.11 Outline of the scheme of two-port interferometer.

Fig. 1.12 Variance of the cosine of radiation phase (119) in the two-mode coherent state at
la+12 = JamI = lal2 versus )a12.

Fig. 1.13 Variance of the cosine of radiation phase (119) in the  two-mode coherent state as
a function of IQ+  I”  at fixed la-  1’ = 0.1 respectively.

Fig. 1.14 Photodetection and region of localization.

Fig. 1.15 The scheme of two-atom Hertz experiment.

Fig. 1.16 Absorption of radiation by photodetector.

Fig. 1.17 Effective geometry of the model. The z-axis corresponds to the quasi-one-
dimensional time-dependent wave function.

Fig. 1.18 Time dependence of the mean population of the excited level of the detecting atom.

Fig. 1.19 The experimental setup for measurement of the Stokes parameters.

Fig. 1.20 The scheme of one-dimensional Aharonov-Bohm loop, surrounding the direction
of propagation of a longitudinal mode and weakly coupled at points A and B with the external
leads Lt and La ((a) and (b)). (d) The model of an ac normal-metal interferometer. Rr and
R2  are the thermal reservoirs held at voltages fV/2  respectively.



Fig. 1.21 dc conductance of the loop versus square root of ac power: solid line, A1  : AZ  =
1 : 1; dotted line, Al : AZ  = 1 :  2 .  Change in  the  conductance is  normal ized wi th  respect
to static conductance oscillation amplitude.
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